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Autosomal dominant immune dysregulation syndrome in 
humans with CTLA4 mutations
Desirée Schubert1,2,15, Claudia Bode1,15, Rupert Kenefeck3,15, Tie Zheng Hou3,15, James B Wing4, Alan Kennedy3, 
Alla Bulashevska1, Britt-Sabina Petersen5, Alejandro A Schäffer6, Björn A Grüning7, Susanne Unger1, Natalie Frede1, 
Ulrich Baumann8, Torsten Witte8, Reinhold E Schmidt8, Gregor Dueckers9, Tim Niehues9, Suranjith Seneviratne3, 
Maria Kanariou10, Carsten Speckmann1, Stephan Ehl1, Anne Rensing-Ehl1, Klaus Warnatz1, Mirzokhid Rakhmanov1, 
Robert Thimme11, Peter Hasselblatt11, Florian Emmerich12, Toni Cathomen1,12, Rolf Backofen7, Paul Fisch13, 
Maximilian Seidl13, Annette May13, Annette Schmitt-Graeff13, Shinji Ikemizu14, Ulrich Salzer1, Andre Franke5, 
Shimon Sakaguchi4, Lucy S K Walker3,15, David M Sansom3,15 & Bodo Grimbacher1,3,15

The protein cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of immune responses, and its 
loss causes fatal autoimmunity in mice. We studied a large family in which five individuals presented with a complex, 
autosomal dominant immune dysregulation syndrome characterized by hypogammaglobulinemia, recurrent infections and 
multiple autoimmune clinical features. We identified a heterozygous nonsense mutation in exon 1 of CTLA4. Screening 
of 71 unrelated patients with comparable clinical phenotypes identified five additional families (nine individuals) with 
previously undescribed splice site and missense mutations in CTLA4. Clinical penetrance was incomplete (eight adults 
of a total of 19 genetically proven CTLA4 mutation carriers were considered unaffected). However, CTLA-4 protein 
expression was decreased in regulatory T cells (Treg cells) in both patients and carriers with CTLA4 mutations. Whereas 
Treg cells were generally present at elevated numbers in these individuals, their suppressive function, CTLA-4 ligand 
binding and transendocytosis of CD80 were impaired. Mutations in CTLA4 were also associated with decreased circulating 
B cell numbers. Taken together, mutations in CTLA4 resulting in CTLA-4 haploinsufficiency or impaired ligand binding 
result in disrupted T and B cell homeostasis and a complex immune dysregulation syndrome.

Adaptive immune responses must balance the response against foreign 
antigens with the need to avoid damage to host tissue. Inefficient acti-
vation of the immune response results in pathology due to infections, 
whereas overactivation may drive an autoimmune response. It might 
be expected that distinct genetic mutations underlie these apparently 
opposite outcomes, yet, paradoxically, it is well recognized that autoim-
munity and immunodeficiency can manifest concurrently in the same 
individuals1.

Common variable immunodeficiency (CVID) is the most frequent 
primary immunodeficiency in humans characterized by low immuno-
globulin levels, recurrent upper respiratory tract infections and impaired 
vaccination responses2,3. In many patients, CVID presents as an immune 
dysregulation syndrome with autoimmunity, granulomatous disease, 

enteropathy, and malignancy4. The majority of familial CVID cases 
present an autosomal dominant pattern of inheritance, yet disease pen-
etrance may appear incomplete owing to the late onset of symptoms5. 
Dominant mutations causing CVID have been found in NFKB2 (ref.6), 
and some patients with activating PIK3CD mutations present with a 
CVID-like phenotype7. Still, most autosomal dominant mutations caus-
ing CVID or increasing the disease risk remain to be identified.

The mammalian immune system contains self-reactive T cells, 
which are controlled by forkhead box P3-positive (FOXP3+) 
Treg cells8,9. Accordingly, Treg deficiency caused by mutations 
in FOXP3 leads to an aggressive autoimmune syndrome termed 
IPEX (immune dysregulation polyendocrinopathy X-linked)10. In 
mice, deficiency of CTLA-4 results in a lethal autoimmune phe-
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Immune dysregulation in human
subjects with heterozygous germline
mutations in CTLA4
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Eric Meffre,7 Thomas A. Fleisher,1† Steven M. Holland,4,18 Michael J. Lenardo,3,4†
Stuart G. Tangye,5,6 Gulbu Uzel18†

Cytotoxic T lymphocyte antigen–4 (CTLA-4) is an inhibitory receptor found on immune
cells. The consequences of mutations in CTLA4 in humans are unknown. We identified
germline heterozygous mutations in CTLA4 in subjects with severe immune
dysregulation from four unrelated families. Whereas Ctla4 heterozygous mice have
no obvious phenotype, human CTLA4 haploinsufficiency caused dysregulation of FoxP3+

regulatory T (Treg) cells, hyperactivation of effector T cells, and lymphocytic infiltration
of target organs. Patients also exhibited progressive loss of circulating B cells, associated
with an increase of predominantly autoreactive CD21lo B cells and accumulation of B cells
in nonlymphoid organs. Inherited human CTLA4 haploinsufficiency demonstrates a critical
quantitative role for CTLA-4 in governing T and B lymphocyte homeostasis.

I
mmune tolerance is controlled by multiple
mechanisms (1, 2), including regulatory T (Treg)
cells (3–5) and inhibitory receptors (6, 7). Treg
cells constitutively express the inhibitory re-
ceptor CTLA-4, which confers suppressive

functions (8, 9). CTLA-4, also known as CD152,
is also expressed by activated T cells and, upon
ligation, inhibits their proliferation (10). Homo-
zygous deficiency of Ctla4 in mice causes fatal
multiorgan lymphocytic infiltration and destruc-
tion (11–13); hence, CTLA-4 functions at a key
“checkpoint” in immune tolerance. CTLA-4–
immunoglobulin (Ig) fusionproteinandneutralizing
CTLA-4 antibody are used tomodulate immunity in
autoimmune and cancer patients (14, 15), respec-
tively. Studies have given conflicting results regard-
ing the association of CTLA4 single-nucleotide
variants (SNVs) with organ-specific autoimmunity
(16). The consequences of genetic CTLA-4 defi-
ciency in humans are unknown.
Our index patient—a 22-year-old female (A.II.1)—

developed brain, gastrointestinal (GI), and lung
lymphocytic infiltrates, autoimmune thrombo-
cytopenia, and hypogammaglobulinemia in early
childhood (Fig. 1A and table S1). Her 43-year-old
father (A.I.1) manifested lung and GI infiltrates,
hypogammaglobulinemia, and clonally expanded
gd-CD8+ T cells infiltrating and suppressing the
bone marrow (fig. S1A). Four additional cases
from three unrelated families (families B, C,
and D) (fig. S1 and table S1) were identified
among a cohort of 23 patients with autoimmune
cytopenias, hypogammaglobulinemia, CD4 T cell
lymphopenia, and lymphocytic infiltration of non-
lymphoid organs. Patient B.I.1, previously diag-
nosed with common variable immunodeficiency
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Gene5sk	diagnos	
Exom-sekvensering		
KS	



B-celler

BD FACSDiva 8.0.1

BD FACSDiva 8.0.1

CD
21

	

CD38	

CD21-low	B-celler:	
B-celler	fenotypas	avseende	uUryck		
av	CD21	och	CD38	

Kontroll	 CVID	med	t	ex		
CTLA-4-defekt	

Fall	1	
	

Fall	2	 Frisk	bärare	

Minnes	B	 <0,4	 <0,5	 Normalt	

CD21-low	 19	 18	 3	(normalt)	

%	av	B-
celler	

Ökad	andel	B-celler	med	lågt	uiryck	
av	CD21	(och	CD38)	



CD45RA	Naiva	celler	

CD62L	eller	CCR7	
Homing	>ll	lymlörtlar	

1.	Naiva:	Uirycker	naiv-markören	CD45RA,	och	homingreceptor	för	ai	komma	>ll	lymflkörtlar	(CCR7,CD62L)	

4.	TEMRA:	Terminalt	differen>erade	minnes-celler	med	CD45RA.	I	slutstadiet	av	differen>ering	återkommer	
CD45RA,	ökad	andel	vid	kronisk	infek>on/inflamma>on	
	

3.	EM:	Effector	memory,	ak>verade,	ej	homing	>ll	lymlörtlar	utan	infek>ons/inflammao>onshärdar	
2.	CM:	Central	memory,	ak>verade,	saknar	CD45RA,	forparande	homing	>ll	lymlörtlar	

T-celler,	markörer	för	ak>vering/
differen>ering	

Normalt	
CVID	med	t	ex	
CTLA-4-defekt	

1	2	

3	 4	

Många	naiva	 Få	naiva	

Få	terminalt	
differen>erade		

Många	terminalt	
differen>erade		

Avvikelser	i	både	subpopula5oner	av	B-celler	och	T-celler	är	ospecifika	fynd,	men	vid	CVID	är	
de	associerade	med	pågående	eller	risk	för	fram5da	komplika5on	med	immundysreglering	



Signal	1	
An>gen	
presenteras	på	
MHC,	binder	>ll	T-
cellsreceptor	(TCR)	

Ak5vering	av	T-hjälparcell	

An>genpresenterande	cell,	dendri>sk	cell	
Normalt:	visar	upp	autoan>gen	

Ej	ak>vering	av	T-
cellen,	inklusive	
auto-reak>va	T-
celler	

Bild	Sandra	Hellberg	



An>genpresenterande	cell,	dendri>sk	cell	
Normalt:	visar	upp	autoan>gen	

Mikrob	ak5verar	den	dendri>ska	cellen	via	>ll	
exempel	Toll-like	receptor	

Signal	2	
Hjälpsignal	
Co-s>mula>on	
Cellen	ak>veras	

Ak5vering	av	T-hjälparcell	

Bild	Sandra	Hellberg	



CTLA-4	stänger	av	ak5vering	

Nega5v	
signal	

Binder	
CTLA-4	
Konkurrerar	
ut		CD28		

Bild	Sandra	Hellberg	



Abatacept	(Orencia)	binder	och	blockerar	B7,		
minskar	T-cellsak5vering	(behandling	av	RA)	

Bild	Sandra	Hellberg	



Bild	Sandra	Hellberg	

CTLA	är	central	molekyl	för	funk5on	av	regulatoriska	T-celler	
Tar	bort	B7	=	ingen	ak5verande	signal	

Treg-associerad	dysfunk>on	troligen	
vik>gaste	mekanismen	för	
immunak>vering	vid	CTLA-4-defekt	



CTLA-4-agonist	är	logisk	behandling	vid	CTLA-4	defekt	

Stor	och	god	erfarenhet	vid	behandling	av	RA	
	
Viss	erfarenhet	och	preliminärt	goda	resultat	vid	
behandling	av	CTLA-4-defekt	
	
Funk>onellt	test	under	utveckling	där	effekt	av	
CTLA-4	agonist	och	antagonist	undersöks	in	vitro	



Behandling	av	våra	fall	

Behandling	AIHA	
Prednisolon	10-60	mg	

Eqer	gene>sk	diagnos			
Abatacept	(Orencia®),	CTLA-4-
agonist	
Hydroxi-klorokin	(Plaquenil)	
		
Remission	eqer	1-2	månader:	
Bäire		labb-värden	
Minskad	kor>sondos		
	

Behandling	Fall	2		
Lymfocy>nfiltra>on	i	CNS	och	lunga	

Abatacept	(Orencia®),	CTLA-4-
agonist	
Hydroxi-klorokin	(Plaquenil)	
	
3	mån:	ingen	effekt	



Fall 3: LRBA 
Missense variant c.5434 C>T
•  Infek5onskänslig	som	barn	

•  CVID	
•  Lymfocy>nfiltra>on	I	lunga	och	CNS	

•  Hudförändringar	

ARTICLE

Deleterious Mutations in LRBA Are Associated with a
Syndrome of Immune Deficiency and Autoimmunity

Gabriela Lopez-Herrera,1,2 Giacomo Tampella,3,19 Qiang Pan-Hammarström,4,19 Peer Herholz,5,19

Claudia M. Trujillo-Vargas,1,6,19 Kanchan Phadwal,7 Anna Katharina Simon,7,8 Michel Moutschen,9

Amos Etzioni,10 Adi Mory,10 Izhak Srugo,10 Doron Melamed,10 Kjell Hultenby,4 Chonghai Liu,4,11

Manuela Baronio,3 Massimiliano Vitali,3 Pierre Philippet,12 Vinciane Dideberg,13

Asghar Aghamohammadi,14 Nima Rezaei,15 Victoria Enright,1 Likun Du,4 Ulrich Salzer,5

Hermann Eibel,5 Dietmar Pfeifer,16 Hendrik Veelken,17 Hans Stauss,1 Vassilios Lougaris,3

Alessandro Plebani,3 E. Michael Gertz,18 Alejandro A. Schäffer,18 Lennart Hammarström,4

and Bodo Grimbacher1,5,*

Most autosomal genetic causes of childhood-onset hypogammaglobulinemia are currently not well understood. Most affected individ-

uals are simplex cases, but both autosomal-dominant and autosomal-recessive inheritance have been described. We performed genetic

linkage analysis in consanguineous families affected by hypogammaglobulinemia. Four consanguineous families with childhood-onset

humoral immune deficiency and features of autoimmunity shared genotype evidence for a linkage interval on chromosome 4q.

Sequencing of positional candidate genes revealed that in each family, affected individuals had a distinct homozygous mutation in

LRBA (lipopolysaccharide responsive beige-like anchor protein). All LRBA mutations segregated with the disease because homozygous

individuals showed hypogammaglobulinemia and autoimmunity, whereas heterozygous individuals were healthy. These mutations

were absent in healthy controls. Individuals with homozygous LRBAmutations had no LRBA, had disturbed B cell development, defec-

tive in vitro B cell activation, plasmablast formation, and immunoglobulin secretion, and had low proliferative responses. We conclude

that mutations in LRBA cause an immune deficiency characterized by defects in B cell activation and autophagy and by susceptibility to

apoptosis, all of which are associated with a clinical phenotype of hypogammaglobulinemia and autoimmunity.

Introduction

In 86% of cases, childhood-onset agammaglobulinemia is
an X-linked condition (XLA, [MIM 300755]) affecting
male offspring.1 XLA is caused by mutations in BTK
(MIM 300300), which encodes a signaling molecule down-
stream of the B cell antigen receptor,2 and is characterized
by the lack of peripheral B cells (<1%).1 The remainder of
agammaglobulinemias are rare autosomal-recessive (AR)
traits; to date, six genes with mutations causing agamma-
globulinemia have been described.3,4

In contrast to agammaglobulinemias, childhood-onset
hypogammaglobulinemias are characterized by the pres-
ence of B cells in the periphery and by some residual
immunoglobulin production. They might be transient or

persistent and primary (inborn) or secondary as a result
of, e.g., nephrosis, enteric protein loss, medication (immu-
nosuppressive or antiepileptic drugs), or connatal infec-
tion, such as HIV or measles. In addition, primary T cell
deficiencies combined with either the lack of peripheral
B cells or a functional defect of persisting B cells (such as
T-Bþ severe combined immune deficiency or immunodefi-
ciency, centromeric instability, and facial anomalies [ICF]
syndrome [MIM 601457 and 242860, respectively]) might
also include childhood-onset hypogammaglobulinemia as
part of the phenotype.5,6

In adults, primary persistent hypogammaglobulinemia
is either diagnosed as being caused by class-switch-recom-
bination defects leading to various forms of hyper-IgM
syndromes7 (MIM 308230, 605258, 606843, 608106, and
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AUTOIMMUNE DISEASE

Patients with LRBA deficiency show
CTLA4 loss and immune dysregulation
responsive to abatacept therapy
Bernice Lo,1,2* Kejian Zhang,3* Wei Lu,1,2 Lixin Zheng,1,2 Qian Zhang,2,4

Chrysi Kanellopoulou,1,2 Yu Zhang,2,4 Zhiduo Liu,5 Jill M. Fritz,1,2 Rebecca Marsh,6

Ammar Husami,3 Diane Kissell,3 Shannon Nortman,3 Vijaya Chaturvedi,6
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Peter Mustillo,10 Michael Stephens,11 Cesar M. Rueda,12 Claire A. Chougnet,12
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Helen F. Matthews,1,2 Susan Price,1,2 Helen C. Su,2,4 V. Koneti Rao,1,2

Michael J. Lenardo,1,2† Michael B. Jordan6,12†‡

Mutations in the LRBA gene (encoding the lipopolysaccharide-responsive and beige-like
anchor protein) cause a syndrome of autoimmunity, lymphoproliferation, and humoral
immune deficiency. The biological role of LRBA in immunologic disease is unknown.We
found that patients with LRBAdeficiencymanifested a dramatic and sustained improvement
in response to abatacept, a CTLA4 (cytotoxic T lymphocyte antigen-4)–immunoglobulin
fusion drug. Clinical responses and homology of LRBA to proteins controlling intracellular
trafficking led us to hypothesize that it regulates CTLA4, a potent inhibitory immune
receptor.We found that LRBA colocalized with CTLA4 in endosomal vesicles and that LRBA
deficiency or knockdown increased CTLA4 turnover, which resulted in reduced levels of
CTLA4 protein in FoxP3+ regulatory and activated conventional Tcells. In LRBA-deficient
cells, inhibition of lysosome degradation with chloroquine prevented CTLA4 loss.These
findings elucidate a mechanism for CTLA4 trafficking and control of immune responses and
suggest therapies for diseases involving the CTLA4 pathway.

C
ommon variable immune deficiency (CVID)
is a heterogeneous primary immunodefi-
ciency characterized by antibody deficiency,
infections, autoimmunity, and lymphopro-
liferation (1, 2). Lymphocytic interstitial

lung disease (ILD) causes substantial morbidity
and mortality in CVID, and there is no effective
treatment (3–6). CVID can be caused by “lipo-
polysaccharide (LPS)–responsive vesicle traffick-
ing, beach- and anchor-containing” (LRBA) gene
defects (7). The LRBA protein has domains ho-
mologous to vesicle trafficking proteins, but its
function and relation to disease pathogenesis are
unknown (8, 9).
Cytotoxic T lymphocyte–associated protein 4

(CTLA4) is an inhibitory checkpoint protein,
expressed on activated T cells and FoxP3+ regu-
latory T cells (Tregs) (10). CTLA4 inhibits immune
responses by negative signaling, by competition
with the costimulatory molecule CD28 for the
ligands CD80 and CD86, or by removing these
ligands from antigen-presenting cells by trans-
endocytosis (11, 12). CTLA4 resides in endocytic
vesicles that are released to the cell surface after

T cell receptor (TCR) stimulation (13). The clin-
ical effectiveness and adverse effects of CTLA4
modulation are revealed by three approved drugs
that mimic or target CTLA4: abatacept for rheu-
matoid arthritis, belatacept for prevention of re-
jection after renal transplantation, and ipilimumab
for the immunotherapy of melanoma (14–16).
We identified nine patients with immune de-

ficiency and/or autoimmunity from eight un-
related kindreds with biallelic loss-of-function
mutations in LRBA that have not been previous-
ly reported (Fig. 1A). All mutations decreased or
abolished LRBA protein expression as assessed
by immunoblotting and flow cytometry (Fig. 1,
B and C, and fig. S1).
The clinical features of these patients are de-

scribed in detail in the supplementary text and
table S1. Most patients were diagnosed in early
childhood with CVID, and all patients experi-
enced substantial inflammatory and/or auto-
immune complications. Notably, LRBA deficiency
was associated with interesting phenotypic char-
acteristics in several patients, including type 1
diabetes mellitus (patients 1 and 2), Burkitt’s lym-

phoma (patient 6), and exocrine pancreatic in-
sufficiency (patient 1). Patients 1 to 3 experienced
severe ILD—consisting of dense, predominantly
T cell interstitial infiltrates—which was refrac-
tory to multiple medications and led to progres-
sive impairment of lung function (Fig. 1D). Note
that, when patients were treated with abatacept
[a CTLA4-immunoglobulin (CTLA4-Ig) fusion pro-
tein that inhibits T cell responses by competing
for costimulatory ligands], their overall clinical
status, computed tomography (CT) scans, and
pulmonary function showed rapid and dramatic
improvement (Fig. 2). Treatment also halted on-
going inflammatory and/or autoimmune condi-
tions (Fig. 2A); decreased levels of soluble CD25
(sCD25, a biomarker of T cell–mediated inflam-
mation) (17); increased naïve:effector (CD45RA:
RO) T cell ratios (fig. S2); and improved func-
tional antibody responses to polysaccharide vac-
cine antigens in patient 2. In the three patients
treated initially, the improvements in lung disease
were maintained when abatacept was continued
for 5 to 8 years. This treatment had minimal in-
fectious or autoimmune complications. Patients 1
and 3 acquired norovirus infection (see supple-
mentary text), which can cause chronic enteritis
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LRBA	=	LPS-responsive	beige-
like	anchor	protein	

LRBA	binder	CTLA-4	och	förhindrar	
nedbrytning	i	lysosom.	
Dysfunk>on	i	LRBA;		
Funk>onellt	och	kliniskt	=	CTLA-4-
defekt	

Hydroxi-klorokin	(Plaquenil)	
Minskar	lysosomal	degrada>on	
Ökar	CTLA-4	in	vitro	vid	LRBA-defekt	



The extended phenotype of LPS-responsive
beige-like anchor protein (LRBA) deficiency

Laura G!amez-D!ıaz, MSc,a Dietrich August, cand. MD,a Polina Stepensky, MD,b Shoshana Revel-Vilk, MD, MSc,b

Markus G. Seidel, MD,c Mitsuiki Noriko, MD,d Tomohiro Morio, MD, PhD,d Austen J. J. Worth, MD, PhD,e

Jacob Blessing, MD, PhD,f Frank Van de Veerdonk, MD, PhD,g Tobias Feuchtinger, MD,h Maria Kanariou, MD, PhD,i

Annette Schmitt-Graeff, MD,j Sophie Jung, DD, PhD,a Suranjith Seneviratne, MD, PhD,k Siobhan Burns, MD,k
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Michael Jordan, MD,f and Bodo Grimbacher, MDa,k Freiburg and Frankfurt, Germany, Jerusalem, Israel, Graz, Austria,

Tokyo, Japan, London, United Kingdom, Cincinnati, Ohio, Nijmegen, The Netherlands, Munich, Germany, Athens, Greece, and Tehran, Iran

Background: LPS-responsive beige-like anchor protein (LRBA)
deficiency is a primary immunodeficiency caused by biallelic
mutations in LRBA that abolish LRBA protein expression.
Objective: We sought to report the extended phenotype of
LRBA deficiency in a cohort of 22 LRBA-deficient patients.
Methods: Clinical criteria, protein detection, and genetic
sequencing were applied to diagnose LRBA deficiency.

Results: Ninety-three patients met the inclusion criteria and
were considered to have possible LRBA deficiency. Twenty-four
patients did not express LRBA protein and were labeled as
having probable LRBA deficiency, whereas 22 were genetically
confirmed as having definitive LRBA deficiency, with biallelic
mutations in LRBA. Seventeen of these were novel and included
homozygous or compound heterozygous mutations. Immune
dysregulation (95%), organomegaly (86%), recurrent infections
(71%), and hypogammaglobulinemia (57%) were the main
clinical complications observed in LRBA-deficient patients.
Although 81% of LRBA-deficient patients had normal T-cell
counts, 73% had reduced regulatory T (Treg) cell numbers.
Most LRBA-deficient patients had low B-cell subset counts,
mainly in switched memory B cells (80%) and plasmablasts
(92%), with a defective specific antibody response in 67%. Of
the 22 patients, 3 are deceased, 2 were treated successfully with
hematopoietic stem cell transplantation, 7 are receiving
immunoglobulin replacement, and 15 are receiving
immunosuppressive treatment with systemic corticosteroids
alone or in combination with steroid-sparing agents.
Conclusion: This report describes the largest cohort of patients
with LRBA deficiency and offers guidelines for physicians to
identify LRBA deficiency, supporting appropriate clinical
management. (J Allergy Clin Immunol 2016;137:223-30.)

Key words: LPS-responsive beige-like anchor protein, primary im-
munodeficiency, common variable Immunodeficiency, autoimmunity,
hypogammaglobulinemia, enteropathy, lymphoproliferation

LPS-responsive beige-like anchor protein (LRBA) is a member
of the PH-BEACH-WD40 (pleckstrin homology-beige and
Chediak-Higashi-tryptophan aspartic acid dipeptide) protein
family, which is highly conserved among species and widely
expressed in human tissues.1 In 2012, we identified 5 patients
from 4 different families with homozygous mutations in LRBA,
describing a novel primary immunodeficiency since known as
LRBA deficiency.2 LRBA deficiency is caused by loss of protein
expression of LRBA, which can be caused by either homozygous
or compound heterozygous mutations in LRBA. LRBA deficiency
was first characterized by early-onset hypogammaglobulinemia,
autoimmune manifestations, susceptibility to inflammatory
bowel disease (IBD), and recurrent infections.2 However,
LRBA case reports have shown patients with IBD accompanied
or not by antibody deficiency (common variable immunodefi-
ciency [CVID]),3,4 a patient with autoimmune manifestations
without hypogammaglobulinemia,5 and, recently, a patient from
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