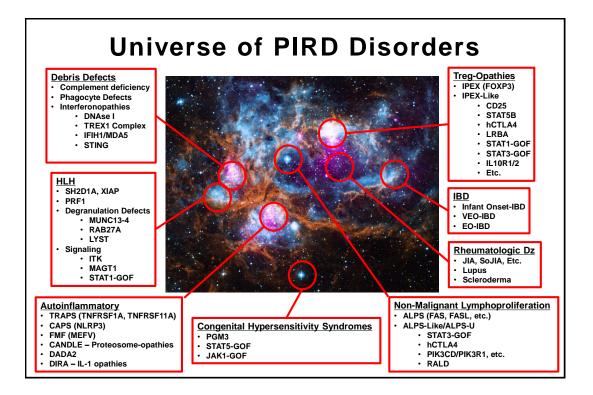
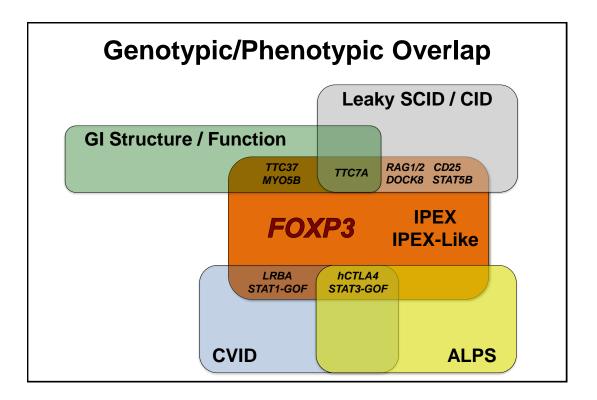
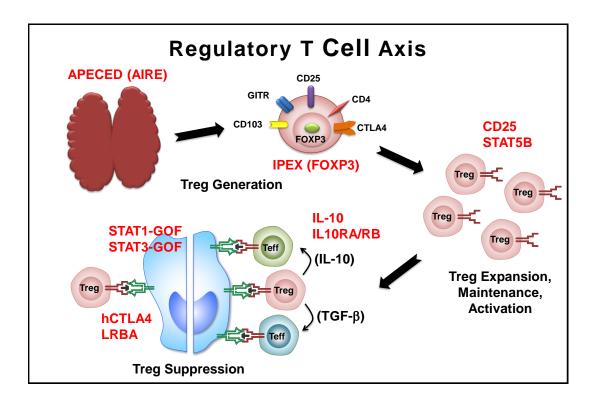

Autoimmunity in PIDD Hematopoietic Cell Transplant in PIDD

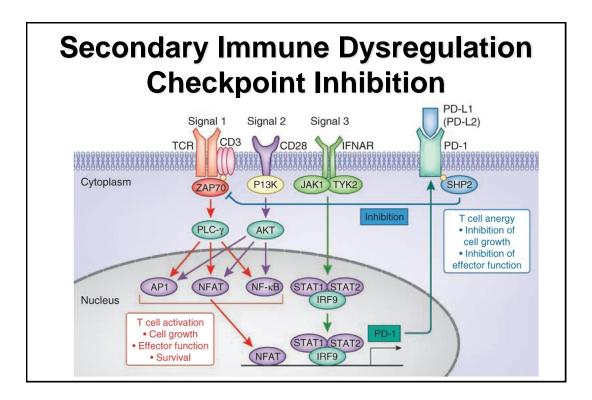
Troy R. Torgerson, MD PhD


Associate Professor, Pediatric Immunology/Rheumatology Director, Immunology Diagnostic Laboratory (IDL) Co-Director, Non-Malignant Transplant Program University of Washington & Seattle Children' s Hospital

Immune Dysregulation


A clinical disorder that occurs when normal for maintaining mechanisms immune homeostasis either absent are or are overcome/overwhelmed thus leading to an inappropriate immune response that causes cells in damage to host the form of autoimmunity or inflammation.





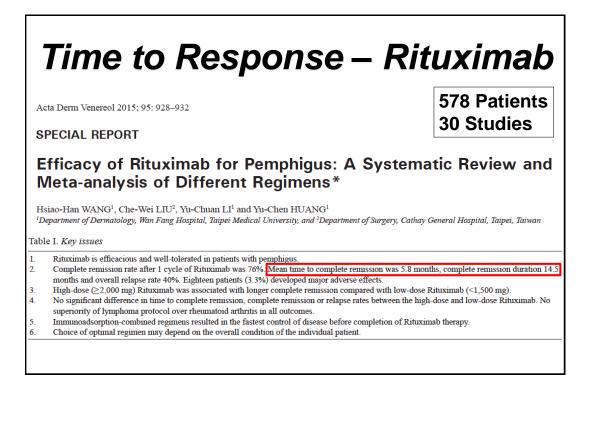
IPEX & IPEX-Like Genotyping

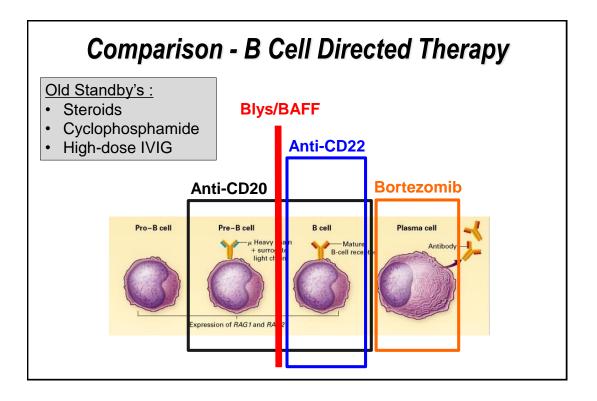
IPEX:	FOXP3	
IPEX-like:	STAT1-GOF STAT3-GOF STAT5B CTLA4 Haploinsufficiency LRBA CD25 TTC37 TTC7A RAG1/2 DOCK8 IL10RA/RB TNFAIP3 CARD11 MYO5B	34% of patients in IPEX-like cohort

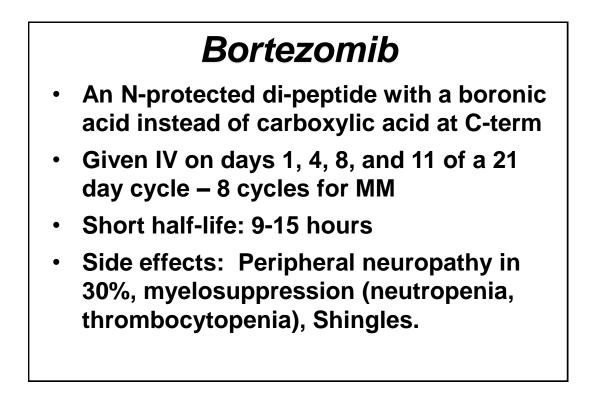
Organ Involvement & Management

- <u>Heme</u> AIHA, ITP, Autoimmune Neutropenia.
- <u>GI</u> Enteropathy, Liver
- <u>Lungs</u> LIP, Follicular bronchiolitis, Granulomas
- <u>Skin</u> Eczema, Psoriasis, Pemphigus nodularis
- <u>Endocrine</u> Thyroiditis, Type I DM, Other

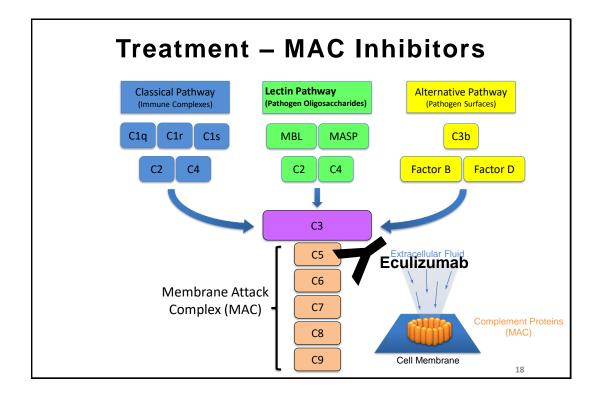
Time to Response – Rituximab

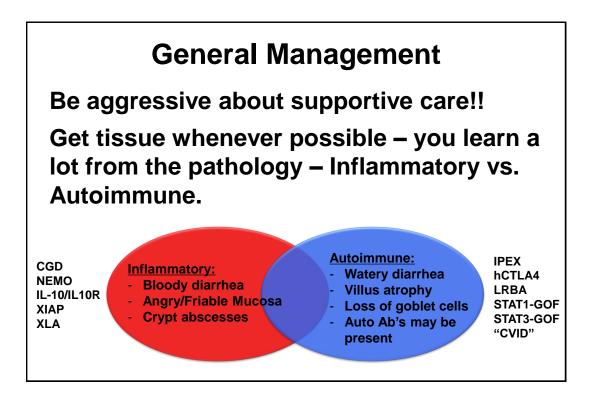

Annals of Internal Medicine


123 Patients 19 Studies


Systematic Review: Efficacy and Safety of Rituximab for Adults with Idiopathic Thrombocytopenic Purpura

Donald M. Arnold, MD, MSc; Francesco Dentali, MD; Mark A. Crowther, MD, MSc; Ralph M. Meyer, MD; Richard J. Cook, PhD; Christopher Sigouin, MSc; Graeme A. Fraser, MD; Wendy Lim, MD, MSc; and John G. Kelton, MD


Variable	Median	Interquartile Range	Range	Contributing Reports (Patients) n (n)
Time to response, wk	5.5	3.0-6.6	2.0-18.0	6 (123)
Response duration, mo	10.5	6.3-17.8	3.0-20.0	16 (252)
Follow-up, mo	9.5	6.0-21.3	2.0-25.0	10 (187)





Organ Involvement & Management

- <u>Heme</u> AIHA, ITP, Autoimmune Neutropenia.
- <u>GI</u> Enteropathy, Liver
- <u>Lungs</u> LIP, Follicular bronchiolitis, Granulomas
- <u>Skin</u> Eczema, Psoriasis, Pemphigus nodularis
- <u>Endocrine</u> Thyroiditis, Type I DM, Other

Nodular Lymphoid Hyperplasia

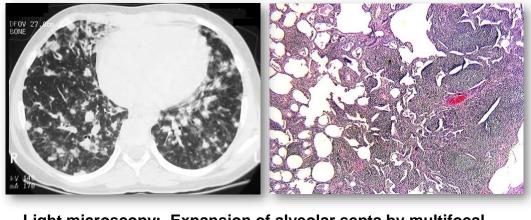
- Watery diarrhea
- Often quite responsive to steroids – can use nonabsorbable
- Responsive to Rapamycin

General Management (Cont.)

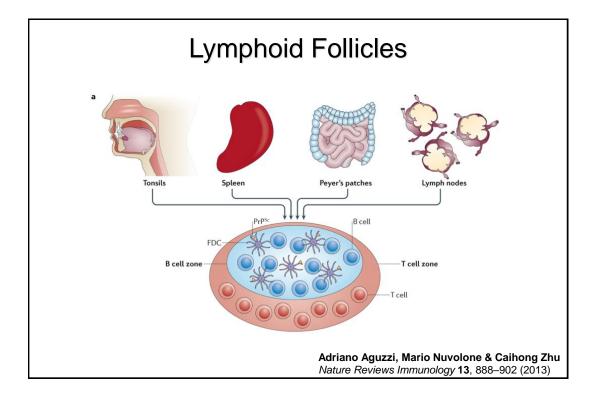
Nutrition (Cont.):

- Check nutrition labs early Electrolytes, Ca⁺⁺, Mg⁺⁺, Phos, Zinc, Micronutrients, Albumin, Pre-Albumin, AST/ALT, Clotting (Vit. K).
- You might need to enlist the help of a nutritionist ask for consultation.
- Ask diet questions and try a change in diet (Cow- or soy-based formulas → partially digested or elemental formula).

General Management (Cont.)


Nutrition (Cont.):

- Some patients just don't tolerate oral feeds profuse diarrhea or vomiting. Start TPN and put patient on full bowel rest if needed.
- If patients are severely malnourished, sometimes improving nutritional status alone with parenteral nutrition will allow them to re-grow villi and begin to absorb so enteral feeds can be re-started.


Organ Involvement & Management

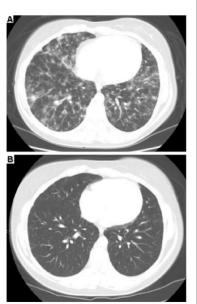
- <u>Heme</u> AIHA, ITP, Autoimmune Neutropenia.
- GI Enteropathy, Liver
- <u>Lungs</u> LIP, Follicular bronchiolitis, Granulomas
- <u>Skin</u> Eczema, Psoriasis, Pemphigus nodularis
- <u>Endocrine</u> Thyroiditis, Type I DM, Other

Follicular Bronchiolitis & Granulomas

<u>Light microscopy:</u> Expansion of alveolar septa by multifocal dense nodular and diffuse interstitial infiltrates composed of mature lymphocytes and plasma cells. Multiple lymphoid aggregates with active germinal centers also seen.

Rituximab in CVID GLILD

J Clin Immunol (2013) 33:30-39 DOI 10.1007/s10875-012-9755-3


ORIGINAL RESEARCH

Use of Combination Chemotherapy for Treatment of Granulomatous and Lymphocytic Interstitial Lung Disease (GLILD) in Patients with Common Variable Immunodeficiency (CVID)

Nicole M. Chase - James W. Verbsky - Mary K. Hintermeyer - Jill K. Waukau -Aoy Tomita-Mitchell - James T. Casper - Sumit Singh - Kaushik S. Shahir -William B. Tisol - Melodee L. Nugent - R. Nagarjun Rao - A. Craig Mackinnon -Lawrence R. Goodman - Pippa M. Simpson - John M. Routes

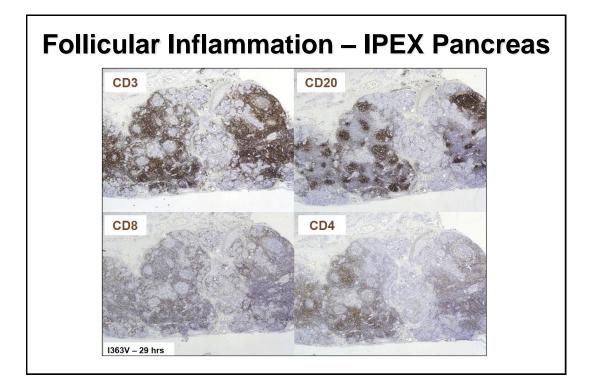
Key Point:

- Lung biopsy is essential to make sure you know what you are dealing with
- Rituximab + Azathioprine

Organ Systems

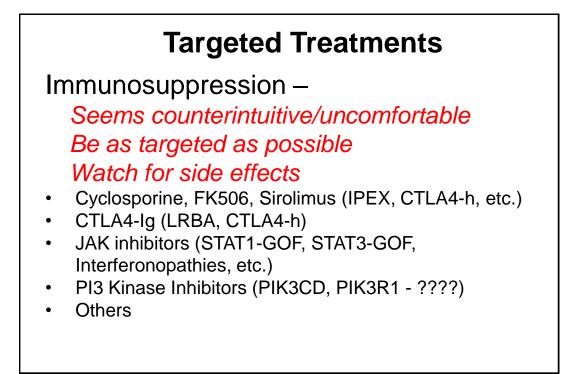
- <u>Heme</u> AIHA, ITP, Autoimmune Neutropenia.
- GI Enteropathy, Liver
- <u>Lungs</u> LIP, Follicular bronchiolitis, Granulomas
- <u>Skin</u> Eczema, Psoriasis, Pemphigus nodularis

• *Endocrine* – Thyroiditis, Type I DM, Other

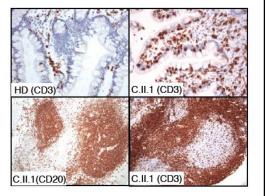

Common Skin Diseases

Initial Management Aggressive Supportive Care: • Nutritional support, Parenteral nutrition if needed • Topical therapies – involve wound care/burn team if needed • May need systemic therapy – Rituximab (Pemphigus), Others

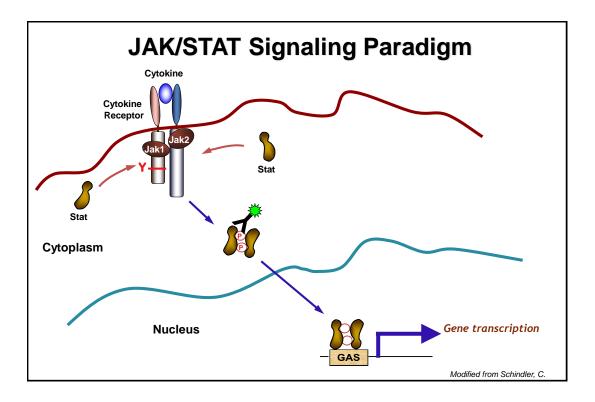
Organ Systems

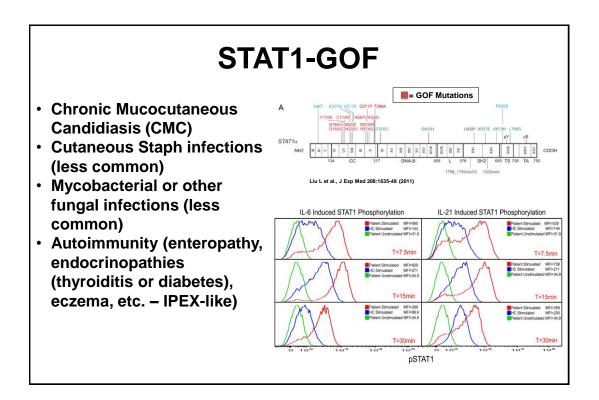

- <u>Heme</u> AIHA, ITP, Autoimmune Neutropenia.
- <u>GI</u> Enteropathy, Liver
- <u>Lungs</u> LIP, Follicular bronchiolitis, Granulomas
- <u>Skin</u> Eczema, Psoriasis, Pemphigus nodularis
- <u>Endocrine</u> Thyroiditis, Type I DM, Other

Initial Management

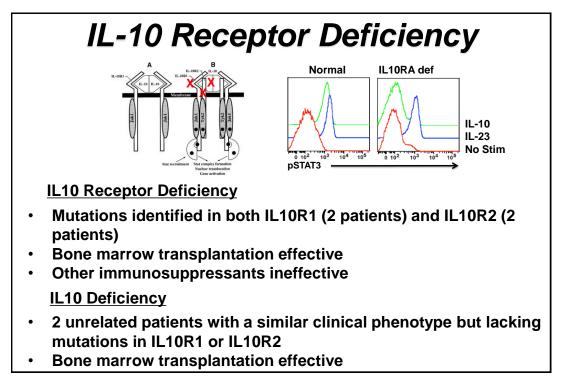

Aggressive Supportive Care:

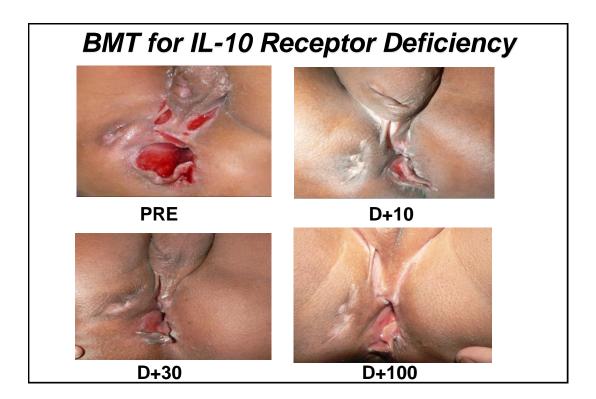
- Nutritional support, Parenteral nutrition if needed
- Insulin, Thyroid hormone, etc.
- Consider systemic therapies Tacrolimus, Rapamycin, Rituximab, etc.

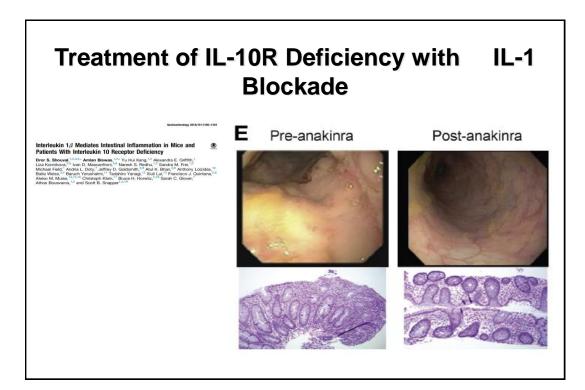


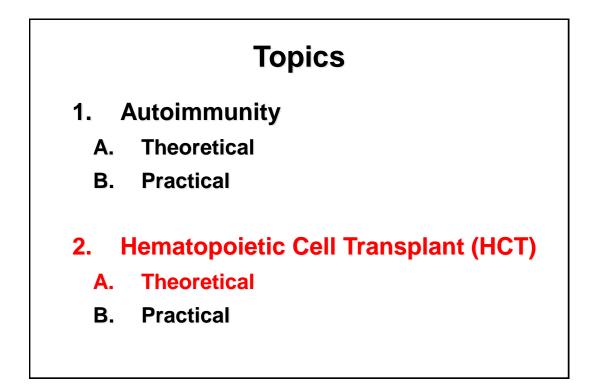

CTLA-4 Haploinsufficiency -Clinical Phenotype

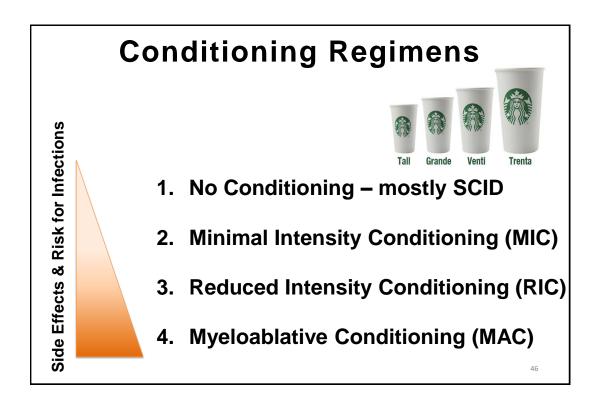
Clinical manifestations	Frequency
Diarrhea/enteropathy	11/14 (78%)
Hypogammaglobulinemia	10/13 (76%)
Granulomatous lymphocytic interstitial lung disease	8/12 (66%)
Respiratory infections ^a	8/14 (57%)
Organ infiltration (bone marrow, kidney, brain, liver)	7/14 (50%)
Splenomegaly	6/12 (50%)
Autoimmune thrombocytopenia	5/14 (35%)
Autoimmune hemolytic anemia	4/14 (28%)
Lymphadenopathy	4/14 (28%)
Psoriasis and other skin diseases ^b	3/14 (21%)
Autoimmune thyroiditis	2/13 (15%)
Autoimmune arthritis	2/14 (14%)
Solid cancer	1/14 (7%)

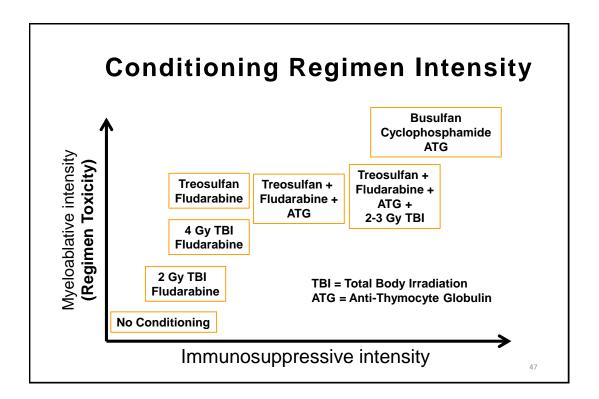








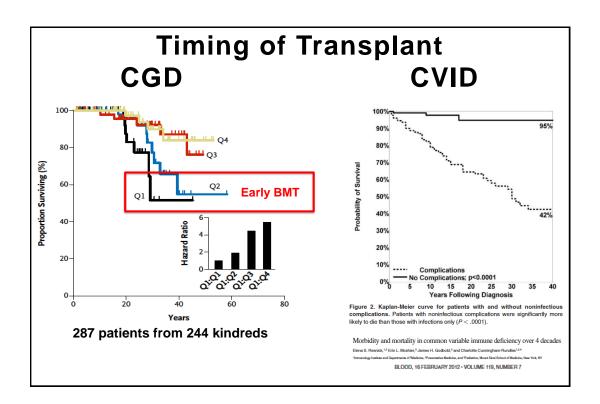

Summary

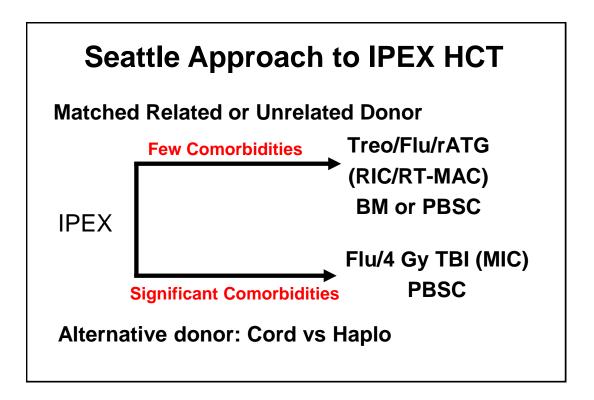

- 1. Autoimmunity is the dominant feature of PIRDs and is common in PIDDs
- 2. Need to treat autoimmunity and inflammation aggressively Uncomfortable!
- 3. If you can find a genetic defect targeted therapies are available.

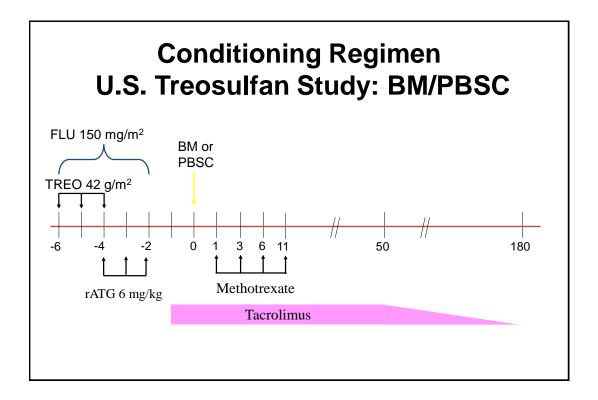
Hematopoietic Cell Transplant – The 5 Key Things to Know

- <u>Conditioning Regimen</u> Drugs, Radiation (TBI), Antibodies (ATG, Alemtuzumab, etc.)
- <u>Donor Source</u> MRD, MUD, MMRD, Cord, etc.
- Graft Type Bone marrow vs. PBSC
- <u>Graft Manipulation</u> T cell depletion, CD34 selection, *in vivo* Cytoxan, etc.
- <u>GvHD Prophylaxis</u> Tacrolimus, Rapamycin, MTX, MMF, etc.

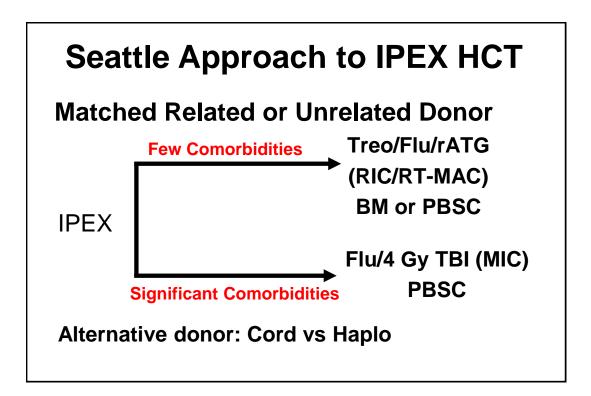
Topics


1. Autoimmunity


- A. Theoretical
- **B.** Practical
- 2. Hematopoietic Cell Transplant (HCT)
 - A. Theoretical
 - **B.** Practical


Transplant – Burning Questions

- When do I transplant (Timing)?
- How do I transplant (Regimen)?
- Disease and complication specific
- Changes with new data & experience
- Outcomes often poor to moderate in first experience & reports



IPEX - Treosulfan-Based HSCT (n=10)							
Cell	% Chimerism		GVHD		Clinical	F/U	
Source	CD3	CD33	Acute	Chronic	Response	(yrs)	
BM	100	100	-	-	Remission	>5	
BM	100	100	П	-	Remission*	>5	
BM	98	100	II	-	Remission*	>5	
BM	100	100	-	-	Remission	>1.5	
BM	100	100	-	-	Remission	>0.6	
BM	93	100	-	-	Remission	>0.5	
BM	32	8	-	-	Remission*	>4	
BM	5	0	II	-	Rejection s/p 2 nd BMT	>7	
DCB	96	100	III	+	Remission*	>4	
СВ	60	30	III	-	Remission	Died, 1	

Conclusions: Treosulfan-Based Approach

- Well tolerated with low regimen related toxicity – 9/10 alive
- Successful engraftment
- Low incidence of severe acute & cGVHD
- Disease responses seen in majority of patients
 Full donor chimerism is not required
- · Late effects research needed

Nonmyeloablative Approach Flu/2-4 Gy TBI (n=5)

- IPEX (n=5)
- Median age 17 (range, 0.8-28) years
- Conditioning/Stem Cell Source:
 - Flu/2 Gy TBI: MRD Cord Blood (n=1)
 - Flu/4 Gy TBI: MRD BM (n=1), MURD PBSC (n=3)
- GVHD Prophylaxis:
 - CSP/MMF (n=4)
 - Sirolimus/MMF (n=1)

Nonmyeloablative Approach
Flu/2-4 Gy TBI (n=5)

Age		% Chi	merism	G	VHD	Clinical	F/U
(yrs)	Donor	CD3	CD33	Acute	Chronic	Response	(yrs)
2	MRD Cord	1	84	N/A	N/A	Rejection s/p 2 nd BMT	>14
17	MRD BM	33	60	II	-	Remission*	>8
0.8	MUD PBSC	99	100	II	+	Remission*	>9
24	MUD PBSC	99	100	III	+	Remission	Died, 2.4 Norovirus
28	MUD PBSC	73	100	III	+	Remission*	>0.5
* Persiste	ent IDDM				Burroughs, et.	al, BMT 2007 & .	JACI 2010

Conclusions: Nonmyeloablative Approach

- Reasonable approach for <u>high-risk</u> patients unable to tolerate more aggressive conditioning
- Full donor chimerism not required for disease amelioration
- Low toxicity/mortality in high-risk patients
- GVHD remains a challenge

HCT for CTLA4 Haploinsufficiency

- 8 patients (Newcastle & Seattle)
- Male: 5 Female: 3
- Age at transplant 10-32 years
- Mutation known in 1 patient at transplant
- MIC & RIC regimens
- 6 of 8 alive and well disease in remission
- 2 deaths DKA & GvHD

Slatter M et al., J Allergy Clin Immunol 138:615-19 (2016)

HCT for STAT1-GOF

- 15 patients (Worldwide)
- Male: 9 Female: 6
- Age at transplant 1-33 years
- Mutation known in 1 patient at transplant
- RIC & MAC regimens
- MUD, MRD, and Cord donors
- 6 of 15 alive and well disease in remission
- 8 of 15 with primary or secondary graft loss
- Death due to infections & HLH (2 pts). IPEX-like phenotype had best outcomes

Leiding J et al., J Allergy Clin Immunol in press (2017)

HCT for STAT3-GOF

- 12 patients (Worldwide)
- Male: 5 Female: 7
- Age at transplant 1.5-20 years
- Mutation known in 3 patients at transplant
- RIC & Reduced toxicity MAC regimens
- 7 of 12 alive and well disease in remission but no improvement in growth
- 5 deaths Infections & GvHD

Forbes L et al., Blood submitted (2017)

HCT for LRBA Deficiency

- 12 patients (European)
- Age at transplant 3-15 years
- Mutation known in 3 patients at transplant
- Various RIC regimens
- 8 of 12 alive 3 in complete remission, 3 in good partial remission of IS, 2 in partial remission on IS.
- 4 deaths All early (infections?)

Seidel M et al., J Allergy Clin Immunol in press (2017)

HCT for CVID

- 25 patients (European)
- Age at transplant 8-50 years
- Mutation known in 3 patients at transplant
- RIC & MAC regimens
- Overall survival 48%, survival if transplant for lymphoma 83%.
- 13 deaths 9 infections, 2 cGvHD, 1 VOD, 1 lymphoma recurrence.

Wehr C et al., J Allergy Clin Immunol 135:988-997 (2014)

Summary

- 1. Transplant is a viable option for many PIDD & PIRD disorders
- 2. Timing of transplant remains a challenge for most diseases
- 3. Many unanswered questions regarding best regimen, pretransplant immune suppression, etc.

Acknowledgements

Torgerson Lab Core Team

Stacey Rylaarsdam Jesus Lopez-Guisa Gesmar Segundo Sandro Perrazio Stephanie Anover David Hagin Sarah Baxter

Key Contributors

Lauri Burroughs Jennifer Leiding Lisa Forbes Jennifer Heimall Satoshi Okada Tomohiro Morio Tiphanie Vogel Mary Slatter Andy Gennery Tom Walsh Liliana Bezrodnik Mikko Seppänen