Secondary Immunodeficiency or is it?

Stephen Jolles Consultant Immunologist University Hospital of Wales

Content

- A world of SAD
- Hawaii to Jupiter 16, Are you receiving?
- CG Highs and Lows
- PID manifestations
- Therapy 'Too close for missiles switching to guns'
- A couple of cases
- Conclusions

A world of SAD

- Haematological Disease
- Drugs
- Transplantation
- Protein Loss
- Other

Hawaii to Jupiter 16, Are you receiving?

- Estimated to be 20 fold greater than PID
- Underdiagnosed
- Undertreated
- Increasing numbers of patients
 - New therapies
 - Maintenance therapy
 - Longer survival

Patel, Smita Y. et al. (2019): The Expanding Field of Secondary Antibody Deficiency: Causes, Diagnosis, and Management. In Frontiers in immunology 10, p. 33.

Drug Classes in Haematological Malignancy

Classes of drugs	Agents				
Alkylating agents	Bendamustine, chlorambucil, cisplatin, cyclophosphamide, ifosfamide, and melphalan				
Antimetabolites	Cladribine, cytarabine, fludarabine, methotrexate, nelarabine, pentostatin, and pralatrexate				
Anti-tumor antibiotics	Doxorubicin and pixantrone				
BH3 mimetic	Venetoclax				
CAR T therapies	Axicabtagene ciloleucel, brexucabtagene autoleucel, idecabtagene vicleucel, and tisagenlecleucel				
Corticosteroids	Prednisone and dexamethasone				
HDAC inhibitors	Panobinostat and vorinostat				
IMiDs	Lenalidomide, pomalidomide, and thalidomide				
Kinase inhibitors	Acalabrutinib, duvelisib, ibrutinib, and idelalisib				
Monoclonal antibodies	Alemtuzumab, belantamab mafodotin, brentuximab vedotin, daratumumab, elotuzumab, isatuximab, obinutuzumab, ofatumumab, and rituximab				
Proteasome inhibitors	Bortezomib, carfilzomib, and ixazomib				
SINE	Selinexor Selective inhibitors of nuclear export				
Vinca alkaloids	Vincristine				

BH3, Bcl-2 antagonism through Bcl-2 homology 3; CAR T, chimeric antigen receptor T-cell; HDAC, histone deacetylase; IMiDs, immunomodulatory imide drugs; SINE, selective inhibitors of nuclear export. Jolles S Frontiers Oncology 2023

How to improve early detection

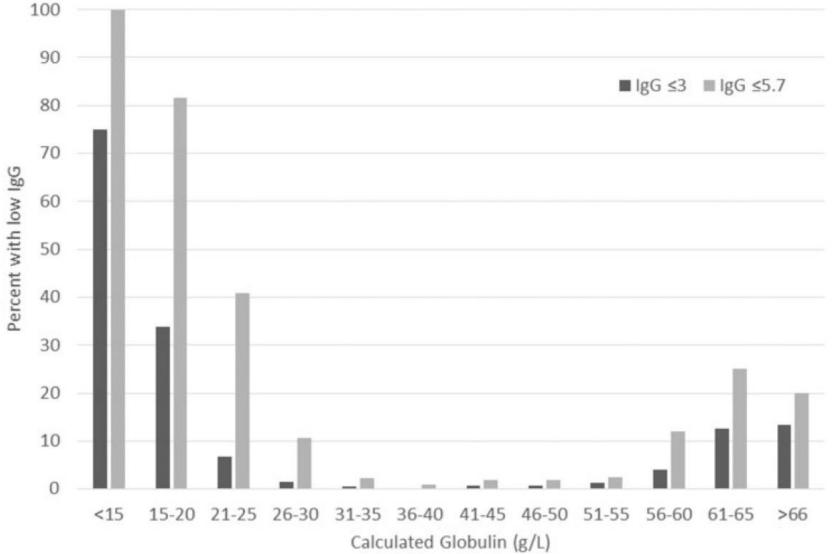
- Education
- JMF Warning signs
- New born screening
- AI Nick Rider
- Screening CG and other

Screening for antibody deficiency – Low CG

CG = Total Protein - Albumin

is CRN EST Test	Ep 90000027	Visit Test Set(s) 1. [LFT] * <m entry=""></m>		<u>D</u> e-Authorise	
	Mor	riston	2. [LIP] <m entry=""> 3. [EPS] <m entry=""> 4. [FSH] <m entry=""></m></m></m>	Erev	Next
cation MH Chemical Pathology, n.Hist.	Collar Doct	or NNEBERG Dr. And ction 01/06/2012 12:3	5. [AL] <m entry=""></m>	Clear	Cance
t.Hist. TEST_LAB HISTORY testing 123		ived 01/06/2012 12:3	lo. [virib] dir ondys		
p.Hist	P I W T	01/00/2012 12.4	(* Curr.) (# In List)	<u>S</u> taff Note	s <u>G</u> raph
	30 U/L 10 U/L lated globulin - may repres immunoglobulins if there is				
Low calcula	ted globulir Consider im	•	•		•

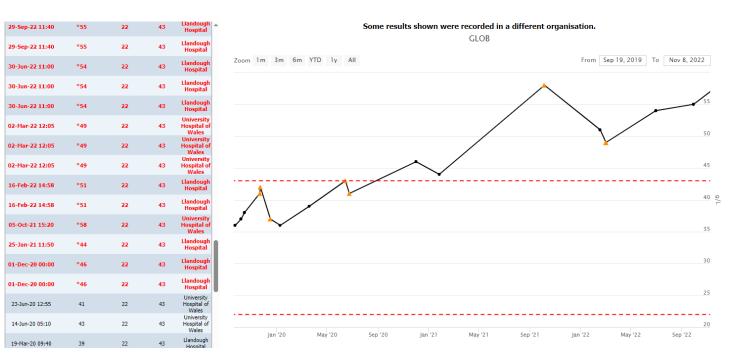
CG is now the commonest referral reason to the Immunodeficiency Service


CG High Study

- Samples were collected between January and December 2021
- Roughly 4000 samples with a globulin >30g/L were flagged each week.
- Samples obtainable in University Hospital of Wales with sufficient serum volume from patients not already included in the study were collected where possible.
- Stratified sample selection resulted in a maximum of 250 samples for each 10g/L CG block.
- A total of 848 patients were included in the final analysis.

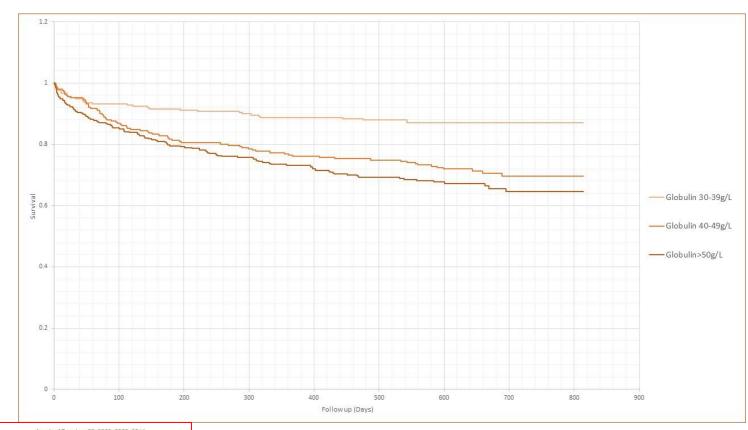
CG High - What kind of things to expect? Hoo T Annals of Clinical Biochemistry 2021

Liver Disease	Haematological	Autoimmune	Infection	High Dose IVIg & Other
Cirrhosis	Multiple myeloma	Sjogrens synd	HIV	HdIVIg
Viral Hepatitis	Waldenstroms macroglobulinaemia	SLE	COPD exacerbation	Malignancy
Autoimmune Hepatitis	MGUS	RA	Bronchiectasis exacerbation	GATA2
Alcoholic liver disease	Lymphoma	IgA nephropathy	Bacterial endocarditis	End stage renal failure
Non alcoholic steatohepatitis	AML	Adult onset Stills	Mycetoma	Sarcoid
Primary Biliary cholangitis	CLL	Scleroderma	Acute rheumatic fever	
PBS	CML	Ulcerative colitis	Cholecystitis	
		Crohns disease		
		IPF		


Finding Antibody Deficiency in High CG

Hoo T 2021 Annals of Clinical Biochemistry

Case - CG


- Community blood tests in 2020 for warfarin/ACEi monitoring. Globulin in 30s
- In later half of 2020 CG gradually increased into the 40s with a further community blood form in **December 2020** for "general deterioration" with <u>CG 46g/L</u>
- CG peaked at 58g/L in October 2021 when patient was admitted with abdominal pain
- Warfarin monitoring was performed in February 2022. CG was 51g/L.
 Immunoglobulins appended by reporting biochemist due to raised globulin. This revealed a compact band in the gamma region and an IgM paraprotein of 21.8g/L
- Waldenstrom's Macroglobulinaemia
- Patient remains well on maintenance chemotherapy

Points to note

- Current CG normal range of 22-43g/L used
- Lack of evidence based guidelines results in inconsistent responses to raised CG result
- Diagnosis could have been made over 12 months earlier

- Follow up undertaken in March 2023
- 15-26months after initial test
- 220/848 deceased, average CG 50g/L
- 54 deceased within 1 month

The Gamma Gap and All-Cause Mortality Stephen P. Juraschek^{1,2,3}*, Alison R. Moliterno⁴, William Checkley^{5,6}, Edgar R. Miller,

RESEARCH ARTICLE

1 Department of Epidemioloy, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America, 2 The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, MD, United States of America, 3 Division of General Internal Medicine, Department of Medicine, Johns Hopkins Medical Institutions, Battimore, MD, United States of America, 4 Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America, 5 Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America, 6 Department of Medicines, Johns Hopkins Bloomberg, School of Public Health, Baltimore MD, United States of America

Annals of Oncology 25: 2260–2266, 2014 doi:10.1093/annonc/mdu274 Published online 23 July 2014

Low albumin-to-globulin ratio associated with cancer incidence and mortality in generally healthy adults

B. Suh^{1,2,†}, S. Park^{3,†}, D. W. Shin^{2,4*}, J. M. Yun², B. Keam³, H.-K. Yang⁵, E. Ahn², H. Lee^{2,4}, J. H. Park² & B. Cho^{2,4}

¹3rd Air Defense Missile Brigade, Republic of Korea Air Force, Seoul; Departments of, "Family Medicine and Health Promotion Center, ²Internal Medicine, Division of Hernatology and Medical Oncology, Seoul National University Hospital, Seoul; ⁴Cancer Survivorship Clinic, Seoul National University Cancer Hospital, Seoul; ⁵Cancer Policy Branch, National Cancer Control Institute, National Cancer Center, Goyang, Republic of Korea

Received 29 April 2014; revised 27 June 2014; accepted 13 July 2014

OPEN The gamma gap predicts 4-year all-cause mortality among nonagenarians and centenarians

Received: 6 July 2017

Accepted: 4 January 2018 Published online: 18 January 2018 Ming Yang ^[], Linlin Xie¹, Xiu Liu¹, Qiukui Hao¹, Jiaojiao Jiang² & Birong Dong¹

Recent studies have revealed the prognostic role of the gamma gap, the total serum proteins concentration minus the albumin concentration, for predicting all-cause mortality among addus. This study aims to investigate the relationship between the gamma gap and all-cause mortality among addust.

Rachel Bradley, Sonali Wijetilleka, Mark Ponsford

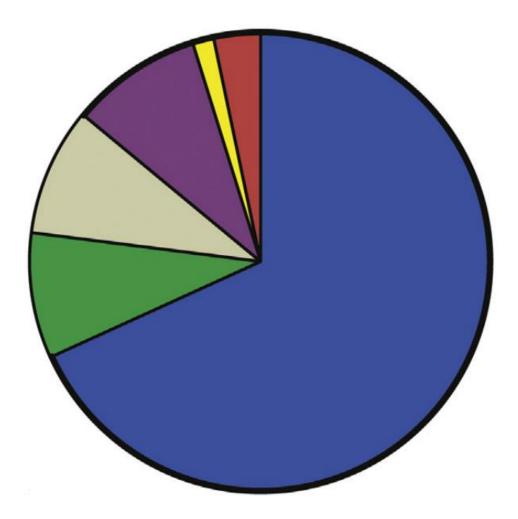
Hawaii to Jupiter 16, Are you receiving?

Patel, Smita Y. et al. (2019): The Expanding Field of Secondary Antibody Deficiency: Causes, Diagnosis, and Management. In Frontiers in immunology 10, p. 33.

PID

SID Detection vs Newborn Screening

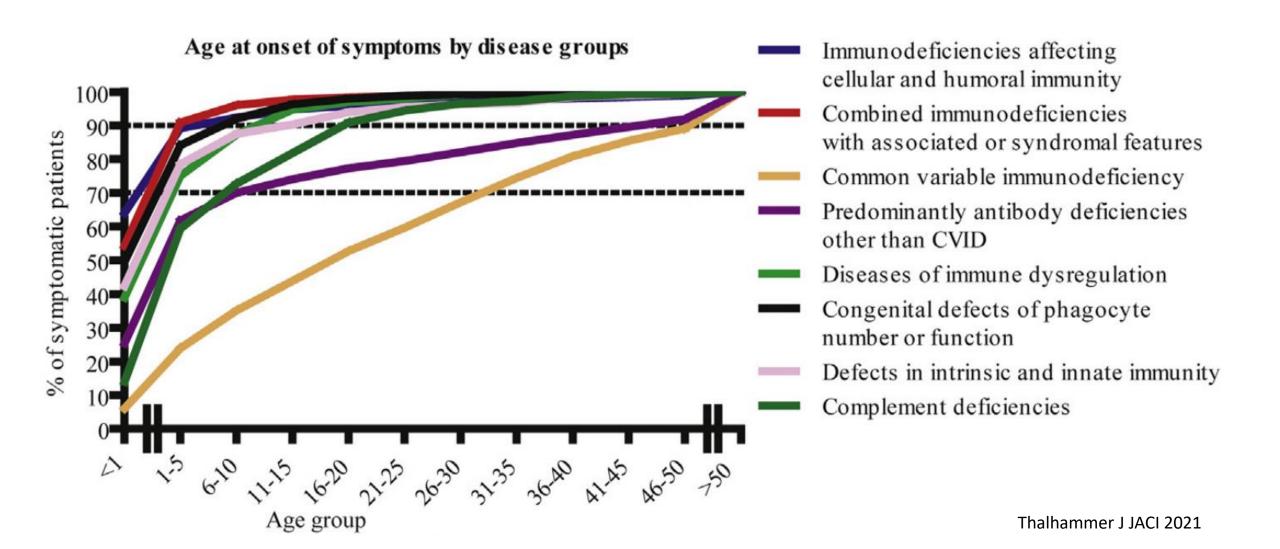
- Need to find SID first
- Should we screen for SID?


- •Sickle cell disease (SCD)
- •Cystic fibrosis (CF)
- Congenital hypothyroidism (CHT)
- •Phenylketonuria (PKU)
- Medium-chain acyl-CoA
- dehydrogenase deficiency (MCADD)
- Maple syrup urine disease (MSUD)
- •Isovaleric acidaemia (IVA)
- •Glutaric aciduria type 1 (GA1)
- •Homocystinuria (HCU)
- •Tyrosinaemia
- •Hopefully soon SCID in UK

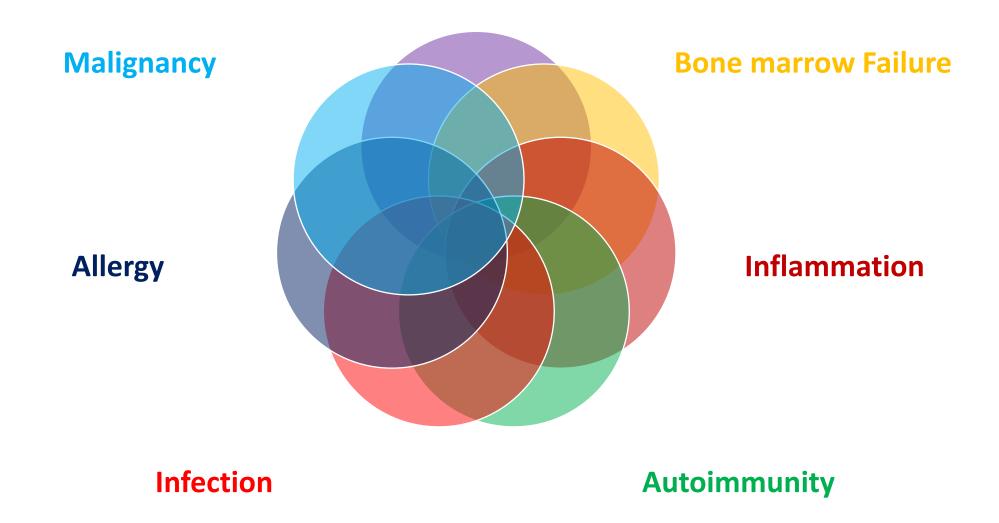
SAD Screening in Haematological Malignancy?

- CLL Hypogamma up to 85%
- MM SID 25-90%
- Lymphoma Hypogamma 15-54%

CLL, MM and Lymphoma should be assumed to have Immunodeficiency until proven otherwise


Initial presentations of PID

- 68.3% Infection without dysregulation
- 8.9% Dysregulation without infection
 - 9.0% Infection and dysregulation
- 9.0% Other symptoms
- 1.6% Family history only
- 3.3% Lab abnormalities only


n = 16486

Symptom onset vs recognition of underlying cause

Manifestations of PID

Immunodeficiency

Manifestations of PID

Immunodeficiency

Immunology Haematology Rheumatology Neurology, Renal Transplant, Dermatology

Malignancy

Oncology, Haematology, Gastroenterology, Immunology Rheumatology, Transplant, Primary Care

Allergy

Allergy, Respiratory, ENT, Dermatology, Immunology, Primary Care

Infection

Infectious disease, Respiratory, Gastroenterology, Dermatology, ENT, Neurology, Opthalmology, Primary Care

Bone marrow Failure

Haematology, Transplant, Immunology, Infectious Disease

Inflammation

Respiratory, Gastroenterology, Hepatology, Dermatology, Renal, Rheumatology, Neurology, Immunology, Primary care

Autoimmunity

Haematology, Rheumatology, Renal, Neurology, Endocrine, Gastroenterology, Primary care, Immunology

Malignancies in PID

- USIDNET 1.42 fold excess relative risk of malignancy Mayor PC 2018
- Majority Haematological
- Mainly Lymphoid
- Linked to cell type affected by PID
- Lymphoma increase males 10 fold females 8.34 fold
- B cell lymphomas most common 8 fold increase in NHL for all PIDs
- DNA repair disorders T cell lymphoma AT & B cell lymphoma Nijmegen BD
- Malignancy strongest factor affecting survival
- Congenital defects of stem cells or phagocytes myeloid malignancies or myelodysplastic syndrome

Malignancies in PID mechanistic considerations

• Intrinsic

- Stem cell, myeloid and lymphoid development, differentiation and apoptosis defects
- Lymphocyte (co-)signalling, cytoskeleton, cytotoxicity and metabolism defects
- Defects of chromosome stability, telomere maintenance, and DNA repair

• Extrinsic

- Transforming (viral) infection
- Chronic tissue inflammation
- Impaired specific tumor immunosurveillance

Predictors of HM in CVID patients

- Pre existing lymphoproliferative disease
- Longstanding lymphadenopathy or splenomegaly
- Autoimmunity cytopenias
- Non infectious GI involvement/enteropathy
- High IgM (or low)
- Older age at CVID diagnosis
- LOCID phenotype
- EBV susceptibility
- Mutations CTLA4, BACH2, TNFSR13B, PIK3CD, PIK3R1, CD27, CD70, NFkB, CD19, TWEAK, CD21, ICOS, IRF2BP2

Clues within HM for PID in SID

- Early onset malignancy esp T cell origin
- Relapsed disease atypical eg extent and site skin/scalp
- Increased toxicity from conventional chemotherapy
- Low CSMB
- EBV PCR
- CMV PCR

PID in SID Clinical Clues

- Cancer therapy toxicity, infections, second primary cancer, cancer recurrence
- Splenomegaly
- Lymphadenopathy polyclonal reactive histology
- Short stature
- Early onset eg IBD other dysregulation
- Progression with age
- Combination of infectious and non infectious complications
- Other features telangiectasia, microcephaly (NBS) growth retardation, dysmorphic features

PID in SID – Family History

- Consanguinity eg first cousins, previous affected children
- FH of dysregulation esp AD GoF
- FH of PID manifestations

PID in SID - Infections

- Sinopulmonary infections, bronchiectasis
- Opportunistic infections PCP, EBV, CMV T cell
- Warts or severe molluscum
- EBV+ lymphoma XLP, MAGT1, CD27, CD70, ITK, RASGRP1, CTPS1, CORO1A, DOCK8
- EBV+ lymphoma widespread at diagnosis, extranodal eg GI, CNS
- Combination sinopul, hypogamma, severe viral vzv, hsv, cmv (rule out HIV)

PID in SID - Dysregulation Autoimmune, inflammation, Allergy

- Autoimmunity cytopenias, IBD, DM and more
- Evans syndrome 40% PID (Hadjadj J Blood 2019)
- Children with cytopenias (154) 11% PID with 58% monogenic cause
- Rheumatological diseases with hypogamma Note R15
- PIRDS
- Eczema WAS, STAT3, DOCK8, +

CLINICAL SCIENCE

High frequency of variants in genes associated with primary immunodeficiencies in patients with rheumatic diseases with secondary hypogammaglobulinaemia

Georgios Sogkas 💿 , Natalia Dubrowinskaja, Ignatius Ryan Adriawan, Manfred Anim, Torsten Witte, Reinhold E Schmidt, Faranaz Atschekzei

PID in SID with Cytopenias

- Evans syndrome 40% PID (Hadjadj J Blood 2019)
- Children with cytopenias (154) 11% PID with 58% monogenic cause
- Short stature
- Splenomegaly
- Infections
- Low T cells
- Low Immunoglobulins
- More likely to fail first line therapy

(Westermann-Clark E Frontiers Immunology 2021)

PID in SID Laboratory clues

- Low levels of natural antibodies
- Low IgA and IgM
- Very low Freelite
- Low antibody responses at cancer diagnosis (primary and secondary)
- Germline vs somatic mutations associated with PID/Lymphoma

Germline & Somatic mutations in HM

REVIEW

Germline mutations predisposing to diffuse large B-cell lymphoma

OC Leeksma^{1,2}, NF de Miranda³ and H Veelken²

ND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Integration of molecular testing for the personalized management of patients with diffuse large B-cell lymphoma and follicular lymphoma

Ruth Stuckey, Hugo Luzardo Henríquez, Haridian de la Nuez Melian, José Carlos Rivero Vera, Cristina Bilbao-Sieyro, María Teresa Gómez-Casares

PD-1 Blockade in Tumors with Mismatch-Repair Deficiency

D.T. Le, J.N. Uram, H. Wang, B.R. Bartlett, H. Kemberling, A.D. Eyring,
A.D. Skora, B.S. Luber, N.S. Azad, D. Laheru, B. Biedrzycki, R.C. Donehower,
A. Zaheer, G.A. Fisher, T.S. Crocenzi, J.J. Lee, S.M. Duffy, R.M. Goldberg,
A. de la Chapelle, M. Koshiji, F. Bhaijee, T. Huebner, R.H. Hruban, L.D. Wood,
N. Cuka, D.M. Pardoll, N. Papadopoulos, K.W. Kinzler, S. Zhou, T.C. Cornish,
J.M. Taube, R.A. Anders, J.R. Eshleman, B. Vogelstein, and L.A. Diaz, Jr.

PID in SID – Unusual responses to Therapy clues

- Failure to respond to first line therapies ie requiring rituximab
- Recrudescence of dysregulatory symptoms within a time frame of ritux recovery from Ritux eg pulmonary nodules
- Lack of humoral immune reconstitution after therapy for HM
- Progression with age
- Combination of infectious and non infectious complications

Why is it important to know about PID in SID?

Alice came to a fork in the road. 'Which road do I take?' she asked. 'Where do you want to go?' responded the Cheshire Cat. 'I don't know,' Alice answered. 'Then,' said the Cat, 'it doesn't matter.

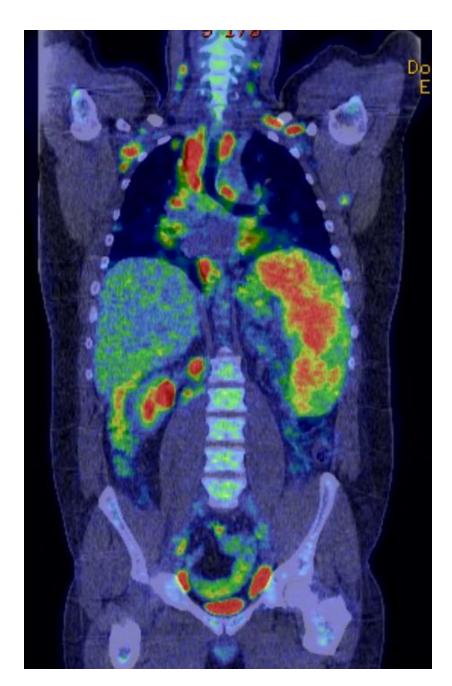
Conventional Treatment Pathways

- Steroids
- Azathioprine
- Cyclophosphamide
- Chlorambucil
- Cladribine
- Methotrexate
- Mycophenolate
- Fludarabine
- And on and on...

Targeted Therapy

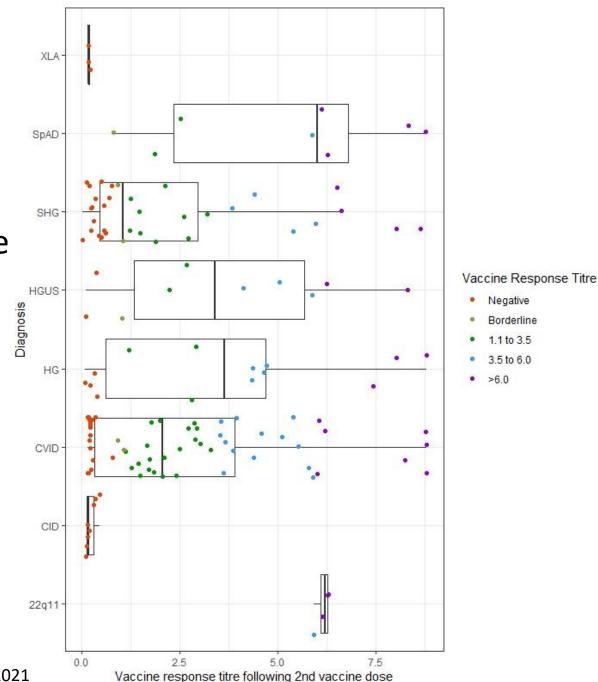
- CTLA4 abatacept, belatacept
- APDS PI3K inhibitors leniolisib, nemiralisib, selatalisib
- DADA2 TNF alpha inhibition
- STAT1 and STAT3 GoF Jakinib
- Interferonopathies Jakinibs, anifrolumab
- IPEX & ALPS sirolimus
- PIRD category more than 129 disorders many with overlaps into CVID

Indications for HSCT in PID


- Bone marrow failure requiring long term blood, platelet or cytokine support. Risk transfusion associated iron overload or alloimmunisation
- Lymphoma or other cancer where delays in HSCT risk relapse, progression or treatment resistance
- HLH high risk recurrence, refractory or relapsed with treatment
- Vital organ dysfunction (kidney, lung, gut, ?liver) due to PID failed to respond to alternative therapies and where delay may preclude HSCT

SAD or is it?

- 38 yr old man
- Aged 28 yrs ITP hdlVlg
- Aged 30 yrs developed Hodgkin's Lymphoma
- Recurrent sinopulmonary infections began following RABVD for lymphoma
- IgG 1.67g/L, IgA <0.05g/L, IgM 0.11g/L, CSMB 0.03%
- IgRT commenced
- Aged 36 yrs splenomegaly, multiple FDG avid pathological nodes, lung nodules


SAD or is it?

- FDGPET suggestive of an active lymphoproliferative disease
- Biopsy reactive lymphoproliferation no evidence of malignancy
- EBV and CMV negative
- Commenced rituximab for distension and pain due to splenomegaly
- Genetic PID panel TNFRSF13B c.310T>C, p.(Cys104Arg)
- National PID HSCT MDT?

NHS Immunology Lab

- Development of functional assays to dissect the most relevant pathways as more targeted therapies become available
- Functional support for VUS analysis
- Assessment of degree of effect of therapies eg APDS
- Reliable and resilient core testing not dependent on ongoing grant funding
- Response to COVID with assays of humoral and cellular responses to vaccinations in immunodeficient patients

Conclusions

- Importance of early detection of SID and hence PID within SID
- Combination of education, screening approaches and a keen look out for clues
- Closer collaboration with a multiplicity of specialties where SID is born and also where PID may present
- Development of accessible functional assays (networked)
- Genetic diagnosis where possible
- Individualised PID informed approach to therapy which may not be the standard
- How to advance HSCT in adult PID
- Revisit vaccination in ID extend COVID learnings eg mRNA norovirus vaccination, post exposure and therapeutic settings

