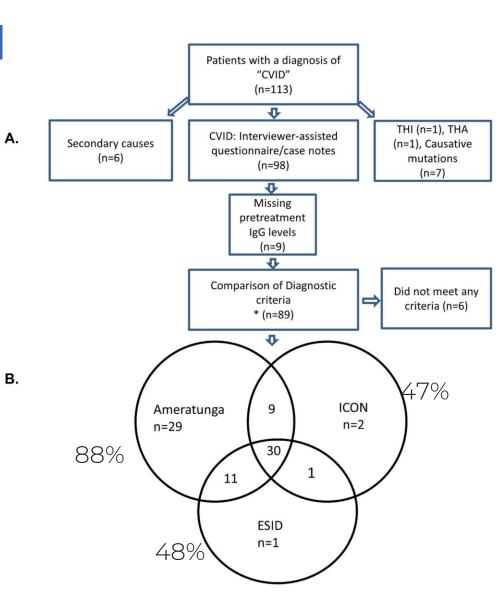


Disclosures

Affiliation/financial interest	Commercial company
Grants	Pharming
Speaking and consultancy fees	None
Participation in a company-sponsored bureau	N/A
Stock shareholder	N/A
Spouse/partner	N/A

Agenda



Our Unit of Immunoprevention in Oncohematology

Landmarks in CVID Classification by clinical criteria Fudenberg et al. 1971 WHO report Farmer et al. 2018 Defines a category of "variable immunodeficiency" CVID noninfectious endotypes Ameratunga et al. 2013 to encompass "the majority of patients with immuno-Unbiased network clustering Diagnostic criteria deficiency [who] cannot yet be unequivocally classified" with immunophenotyping Clinical and Yong et al. 2011 immunophenotypic Disease severity score criteria 15 complications Guevara-Hoyer et al. 2021 Conley et al. 1999 VISUAL Chapel et al. 2012 ESID/PAGID Seidel et al. 2022 Revised classification by diagnostic criteria Bonilla et al. 2016 Chapel et al. 2008 IDDA2.1 kaleidoscope clinical phenotypes ICON definition Classification by New disease activity of CVID clinical phenotypes and prognostic scores Merging of criteria 1971 1990 1999 2002 2003 2008 2011 2014 2016 2018 2021-2022 2012 2013 Addition of novel Bryant et al. 1990 Driessen et al. 2011 Tofighi Zavareh Ameratunga methods et al. 2018 et al. 2022. Classification by Classification by B cell Fekrvand et al. 2022 Disease severity in vitro antibody development patterns score secretion **Immunophenotypes** Warnatz et al. 2002 Kamae et al. 2013 21 parameters interpreted in the Freiburg classification Classification by TREC context of known Wehr et al. 2008 Maglione et al 2020 versus unknown and KREC levels **EUROClass BCMA** genotypes Stepwise classification Scarpa et al 2020 sFLC. Seidel et al. 2019 Berbers et al. 2021, Piqueras et al. 2003 Revised ESID/PAGID Abyazi et al. 2022 Paris classification Proteomics-based classification diagnostic criteria Clinical and Serum biomarkers distinguish CVID with noninfectious versus immunophenotypic Classification by immunophenotype only infectious complications criteria

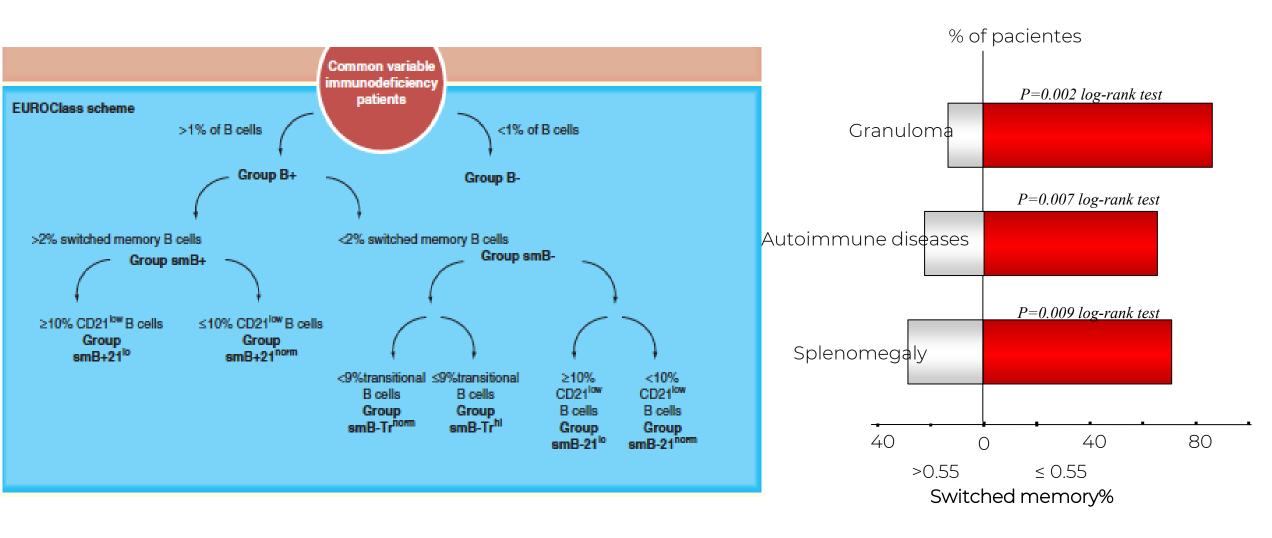
CVID Diagnostic criteria

Criterion	Description
Serum Immunoglobulins	Marked decrease of IgG and IgA (with or without low IgM)
Age of Onset	Onset of immunodeficiency >2 years of age
Vaccine Response/ Isohemagglutinins	Poor/absent response to vaccines and/or absent isohemagglutinins
Exclusion of Secondary Causes	Exclusion of defined causes of hypogammaglobulinemia (e.g., protein loss, drugs, malignancy)
Exclusion of Monogenic Disorders	Exclusion of known monogenic immunodeficiencies (by genetic testing if indicated)
Clinical Features	Recurrent/severe infections, autoimmunity, lymphoproliferation, granulomatous disease
Immunological Features	Poor antibody production, abnormal B cell subsets (e.g., reduced switched memory B cells)

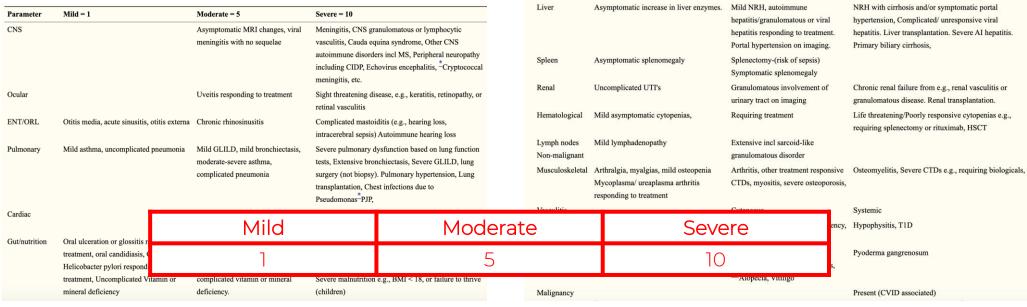
How well can we diagnose and predict CVID course?

Maglione et al 2020 BCMA

Scarpa et al 2020 sFLC


Wehr et al 2008

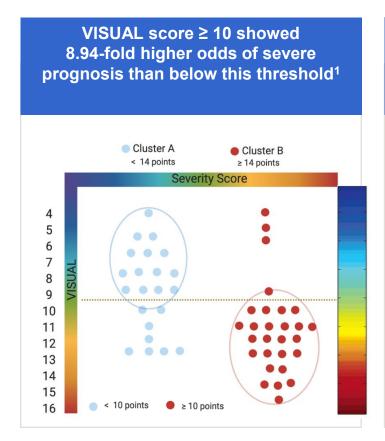
smB phenotype

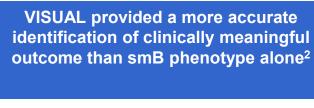

Guevara-Hoyer et al 2021 VISUAL

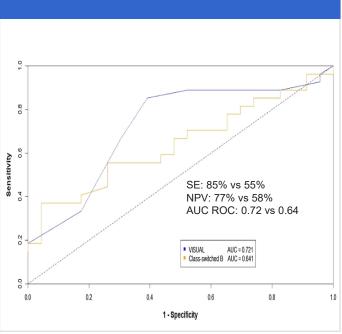
Impaired Switched-memory B cells in CVID

Current hallmark of CVID

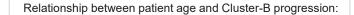
CVID Severity scale by Ameratunga et al.

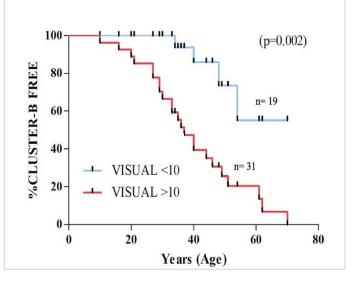



Other infections	-Uncomplicated EBV or CMV viremia	Non-life threatening abscesses,	Sepsis, life-threatening abscesses. *CNS EBV/CMV lymphoproliferative disease, *disseminated fungal infection. *Disseminated adenovirus infection
Other autoimmunity	Uncomplicated pernicious anemia,	Sjogren's syndrome, anti-IgA antibodies. Cutaneous lupus	Severe SLE, APLS,
"Allergies" (including non- allergic conditions)	Rhinitis, mild eczema	Severe eczema, food allergies, Multiple antibiotic allergies Reactions to SCIG/IVIG	
Iatrogenic complications		Complications from long term steroids	Life-threatening complications e.g., CSF leak following sinus surgery. Hepatitis C from IVIG, complications from organ transplantation and HSCT, severe complications from immunosuppression
Misc and rare			Amyloidosis, HLH
Sundry			

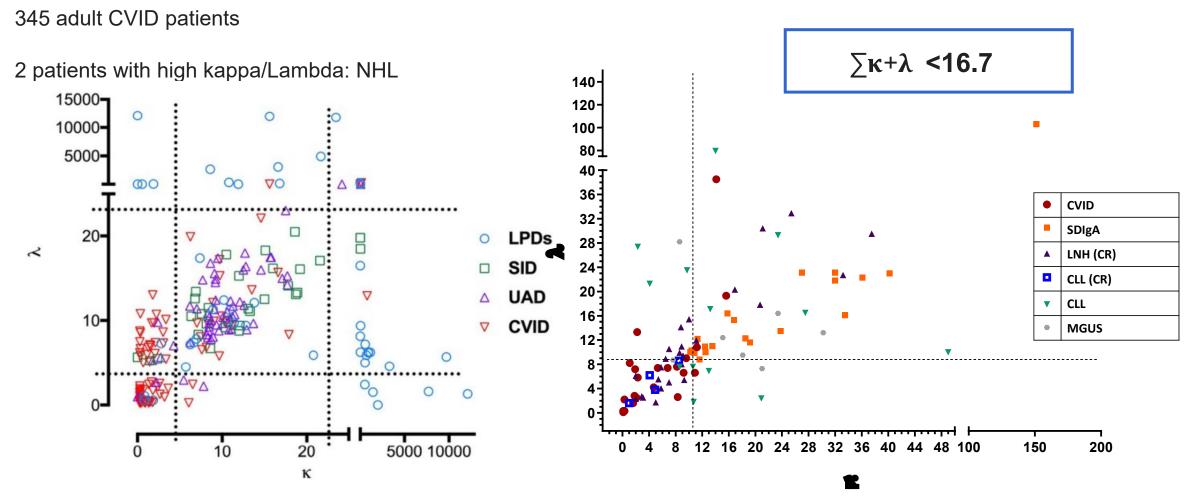

VISUAL score: Variable Immunodeficiency Score Upfront Analytical Link

VISUAL SCORE	1	2	3	4
smB lymphocytes (%)	Normal	< 8%	< 2%	< 1%
IgA (g/L)	Normal-	< 2SD	-	< 0.07
	2SD			
IgM (g/L)	Normal	-	-	> 230
Specific Ab responses	Normal	Alterado ONLY to		Altered to polysaccharide
		polysaccharide or protein Ag		and protein Ag
CD4+ T lymphocytes (µ/mL)	700-1,500	500-700	200-500	<200


VISUAL score better predicted a bad CVID prognosis



Patients with a VISUAL score ≥10 points progressed to cluster B faster than those with a VISUAL score <10²

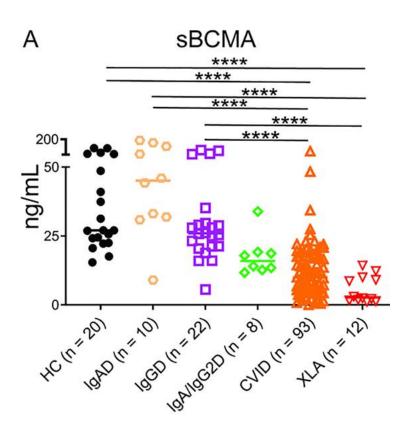


VISUAL ≥10 superior to smB phenotype (p=0.01)² 30% of 50 patients with CVID with bad prognosis would have not been detected by smB²

Serum Free Kappa/Lambda in CVID

A highly sensitive and specific tool in the diagnostic work-up of CVID

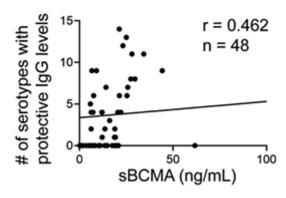
sFLC in CVID showed Higher Performance than Vaccine response

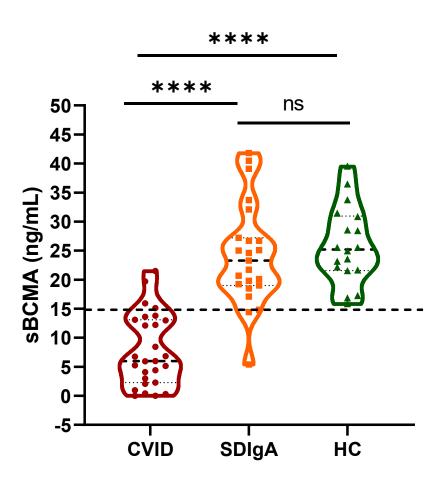

148 CVID patients

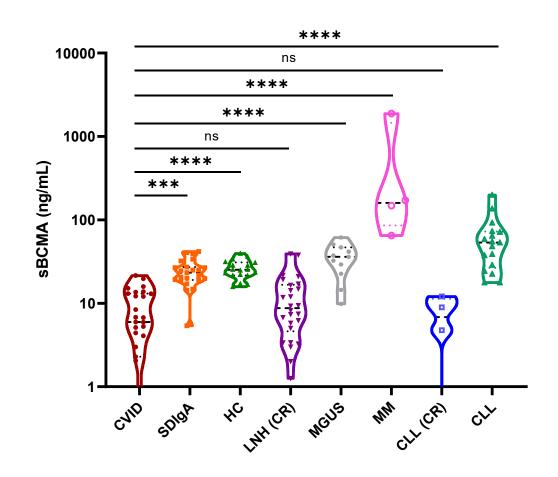
Biomarker		%
κλ Phenotype	Κ-λ+	16,1%
	Κ+λ-	3,4%
	Κ-λ+	1,1%
	Κ-λ-	79,3%
κ/λ ratio	Decreased	2,3%
	Normal	94,3%
	Increased	3,4%
∑κ+λ	Decreased	89,7%
	Increased	10,3

Biomarker	N	%	95% Inferior limit	95% Superior limit
Altered vaccine responses	69/81	85,2%	0,7745	0,9292
smB	39/92	42,4%	0,3229	0,5249
sFLCs	73/87	83,9%	0,7619	0,9163
Σκ+λ	78/87	89,7%	0,8326	0,9605

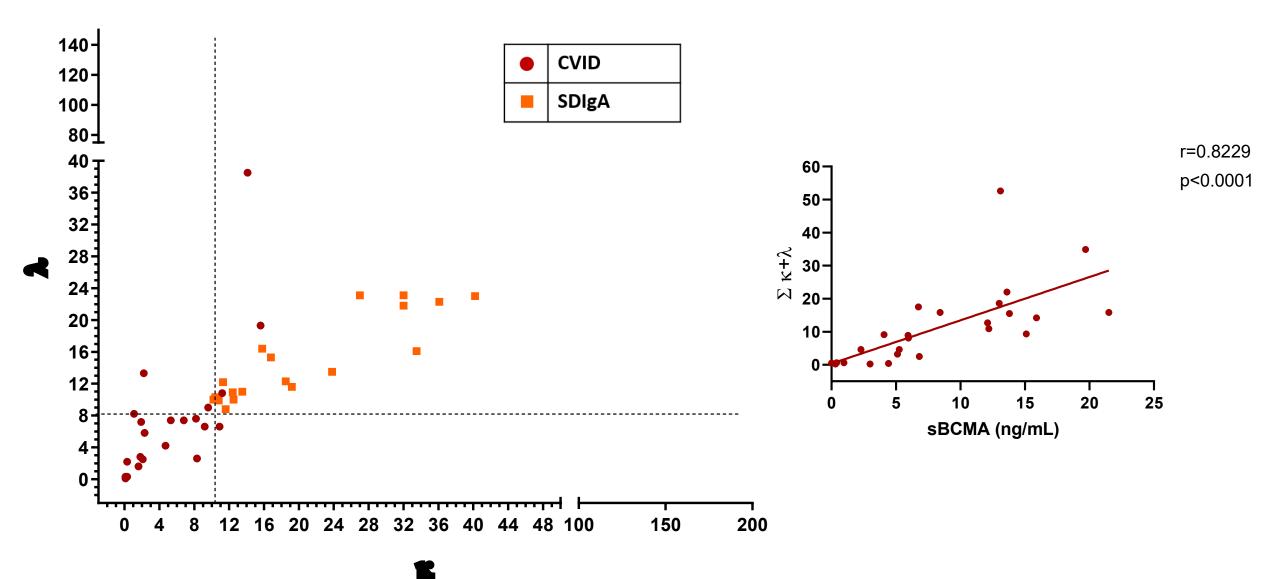
B cell maturation antigen (BCMA) in CVID Diagnosis


sBCMA <15 ng/mL had 97% PPV for CVID or XLA

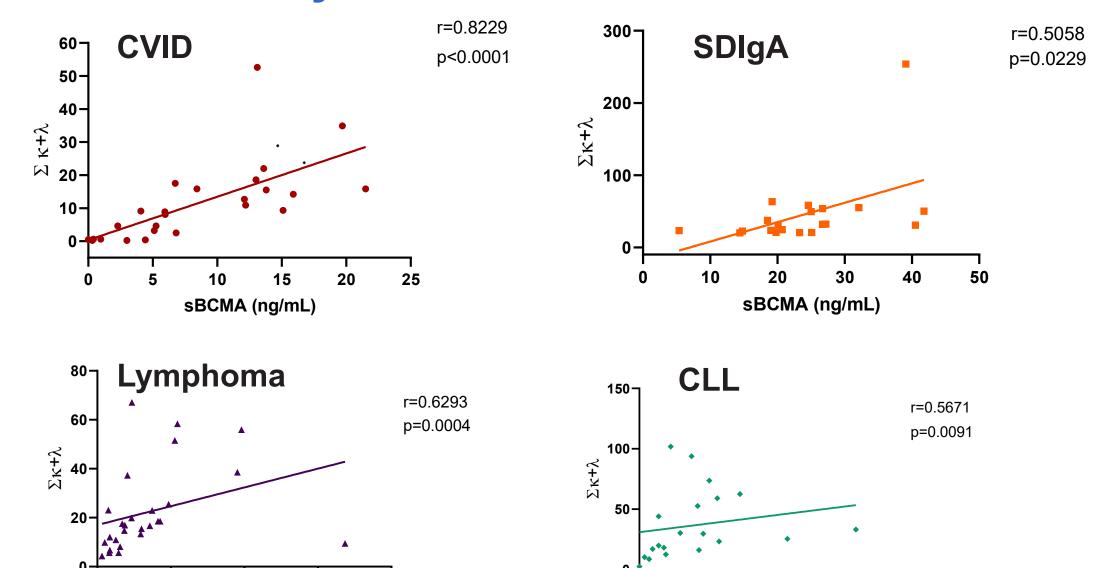

165 patients


AUC ROC curve	Se	Sp	Optimal Cut-off level
0.9448 for CVID	73% (64 - 81, 95% CI)	96% (87 - 99 CI)	15

G Pneumococcal IgG

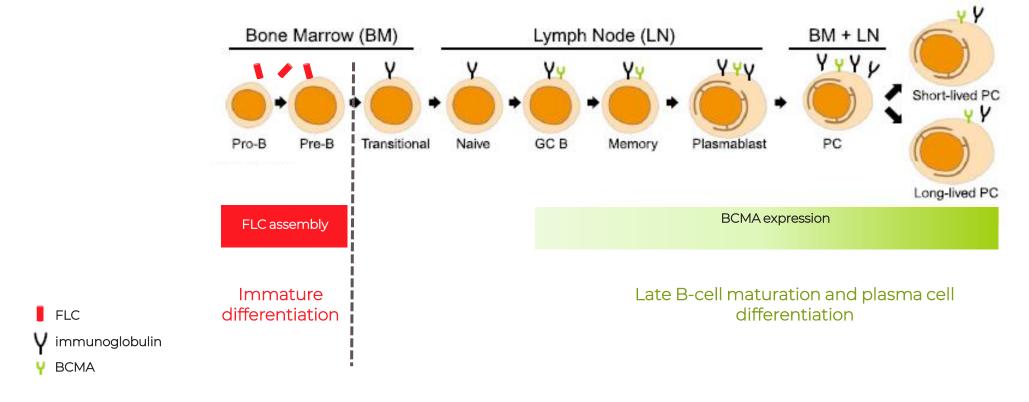


BCMA in CVID versus IgAD and SID Patients



BCMA & in CVID versus IgAD and SID

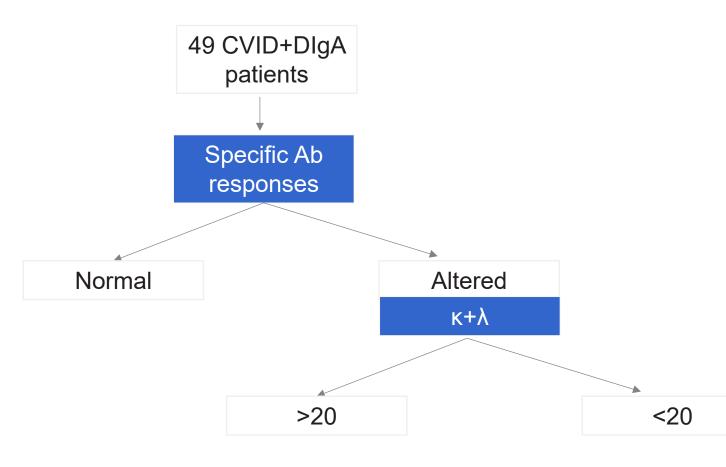
BCMA directly correlates with sFLC


sBCMA (ng/mL)

sBCMA (ng/mL)

Different markers within different B cell biology events

Normal B cell differentiation


Comparison of Diagnostic Performance Among Biomarkers: Multivariate analysis

Compared to Healthy Controls and IgA Deficiency patients

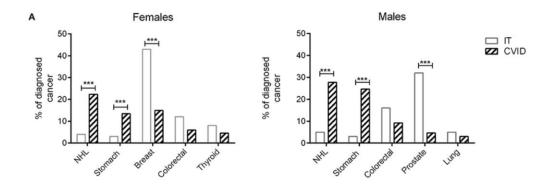
Biomarker	AUC ROC curve	Sensitivity	Specificity	Optimal cut-off level
smB phenotype	0.923 (CI 95% 0.841-1.005)	69%	94%	2.0
Specific Ab response		100%	82%	-
VISUAL score	0.8971 (CI 95% 0.79-0.99)	72.73%	94.74%	10.0
sBCMA	0.9625 (CI 95% 0.92-1.00)	92.68%	85.00%	15.0
Σκ+λ	0.9380 (CI 95% 0.86-1.00)	100.00%	88.00%	20.2

Multivariant analysis for Diagnostic performance in CVID

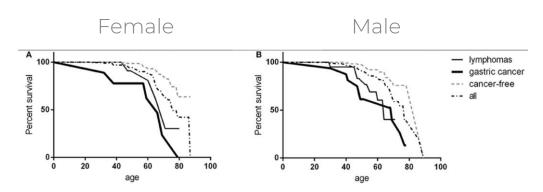
		sBCMA		
	ρ	0.631		
κ+λ	p value (bilateral)	<0.0001		
	n	49	κ+λ	
	ρ	0.407	0.145	
smB	p value (bilateral)	0.001	0.18	
	n	49	49	smB
	ρ	-0.587	-0.295	-0.605
VISUAL	p value (bilateral)	<0.0001	0.06	<0.0001
	n	49	49	49

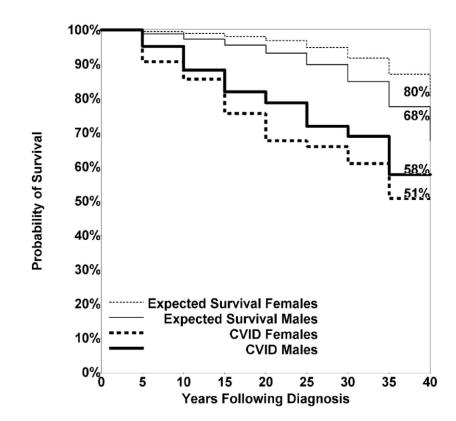
Sensitivity and specificity 100%.

Conclusions


- □ BCMA and sum of kappa/lambda FLCs discriminate CVID from other PID and SID.
- \square sBCMA and $\Sigma \kappa + \lambda$ can complement vaccine responses in CVID diagnosis to take immunoglobulin-replacement therapy decisions without delay.
- \square Cut-offs of sBCMA of 15 and $\Sigma \kappa + \lambda$ of 20 have an excellent CVID diagnostic performance.
- □ VISUAL may add predictive information over switched memory B cells
- \Box High sBCMA and $\Sigma \kappa + \lambda$ titles may indicate risk of B-cell lymphoproliferation

Thank You / Questions


Cancer in Common Variable Immunodeficiency


- 473 CVID patients (Resnick ES): 21%
 - Lymphoma 8.2%. Most common NHL
 - Other cancers 7%
- 295 CVID patients (Kralickova P): x6
 - Lymphoma 6.1% (NHL=HL) & Gastric cancer 2%
 - ITP as a risk factor of lymphoma
 - CTLA4 and PIK3CD mutation (n=8)
- 455 CVID patients (Pulvirenti F): cancer 25.5%; 4% >1 cancer
 - Lymphoma 8.4% (NHL>HL) & Gastric cancer 5.5%
 - Policional lymphadenopathy: premalignant
 - Other cancers: 17.1%

Cancer as a leading cause of Mortality in CVID

- 473 CVID patients (Resnick ES):
 - Risk of death x11 in non-infectious complications: lymphoma
 - 2nd cause of death after lung failure (lymphoma)
- 455 CVID patients (Pulvirenti F):
 - Cancer 1st cause of death: 60.3%
 - Gastric Ca: leading cause mortality x10-fold excess mortality

Secondary Immunodeficiency

- SID is an acquired impairment of the immune system^{1,2}
- SID may occur due to external factors, such as an underlying condition or a side effect of medication^{1,2}
- SID is 30x more common than PID³

 A patient with cancer not only confronts with the disease, but also with immune vulnerability.

Edges between SID & PID

Primary Immunodeficiency

Hematological Malignancy

Secondary Immunodeficiency

SID and PID show similar infection profiles

CVID

	Number of patients	%
Recurrent bronchitis, sinusitis, otitis	243	98
Pneumonia	190	76.6
Viral hepatitis	16	6.5
History of severe Herpes zoster	9	3.6
Giardia enteritis	8	3.2
Pneumocystis carinii infections	7	2.8
Mycoplasma pneumonia	6	2.4
Chronic mucocutaneous candidiasis	3	1.2
Salmonella diarrhea	3	1.2
Sepsis (Pseudomonas, pneumococcus, <i>H. influenzae</i> , Listeria	3	1.2
Campylobacter enteritis	3	1.2
Meningitis (<i>H. influenzae</i> , pneumococcus, and pseudomonas)	2	<1
Osteomyelitis	2	<1
Septic arthritis	2 2 1	<1
Recurrent parotitis		<1
Pyoderma gangrenosum	1	<1
Nocardia brain abscess	1	<1
Anaerobic leg infection leading to amputation	1	<1
HIV infection	1	<1
Cryptococcal lung abscess	1	<1
Viral myocarditis	1	<1
Cytomegalovirus, intestinal infection	1	<1
Microbacterium avium, lung	1	<1
Fatal measles encephalitis	1	<1
Mycoplasma joint infection	1	<1
Psoas abscess (Escherichia coli and Bacteriodes)	1	<1
Pelvic abscess after appendectomy, unknown organism	1	<1

SID

	No. of patients n=77	%
Recurrent bronchitis, sinusitis,	66	78
pneumonia		
Pneumonia	32	42
History of Herpes Zoster	17	22
H. Pylori infection	15	19
Sepsis (<i>Pseudomona sp,</i>		
pneumococcus, H. influenzae, Listeria)	13	17
Recurrent urinary tract infections	12	16
Recurrent oral herpes	7	9
Mycoplasma pneumonia		
VEB	5	6
Pulmonary TB	5	6
Oropharyngeal candidiasis	4	5
Viral hepatitis	4	5
Campylobacter enteritis	3	4
Aspergillus sp.	3	4
Cellulitis	3	4
Cytomegalovirus infection	2	3
Meningitis (<i>Pseudomona</i> sp,	1	1
pneumococcus, <i>H. influenzae</i>)	4	
Human Papillomavirus	1	1
Cryptogenic Organizing Pneumonia	1	1
Recurrent parotitis	1	1
Pneumocystis jirovecii infection	1	1
Osteomyelitis	1	1
Pyoderma gangrenosum	1	1

Changing paradigm from oncogene-targeting to immune checkpoint-modulating

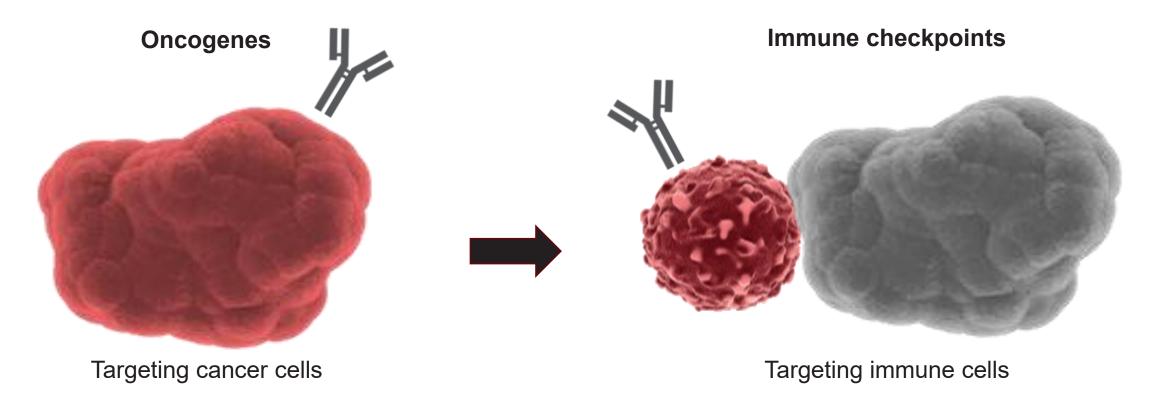
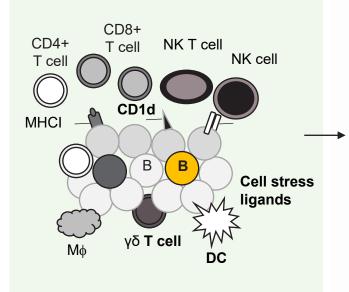


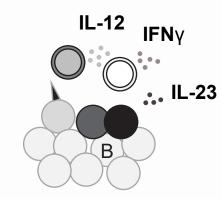
Figure provided courtesy of the speaker.3

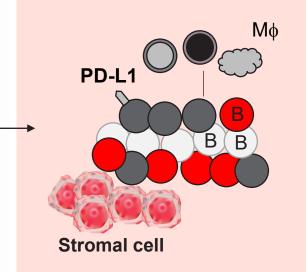
Cancer immunotherapy has emerged as one of the main pillars of cancer treatment because it is personalised, long-lasting, targeted and as safe as other methods, such as surgery, radiotherapy and chemotherapy^{1,2}

The Cancer & Immunity Nexus: 3E Theory

Elimination:1,2


Immune cells recruited to try to mount an efficient anti-tumour immune response


Equilibrium:^{1,2}

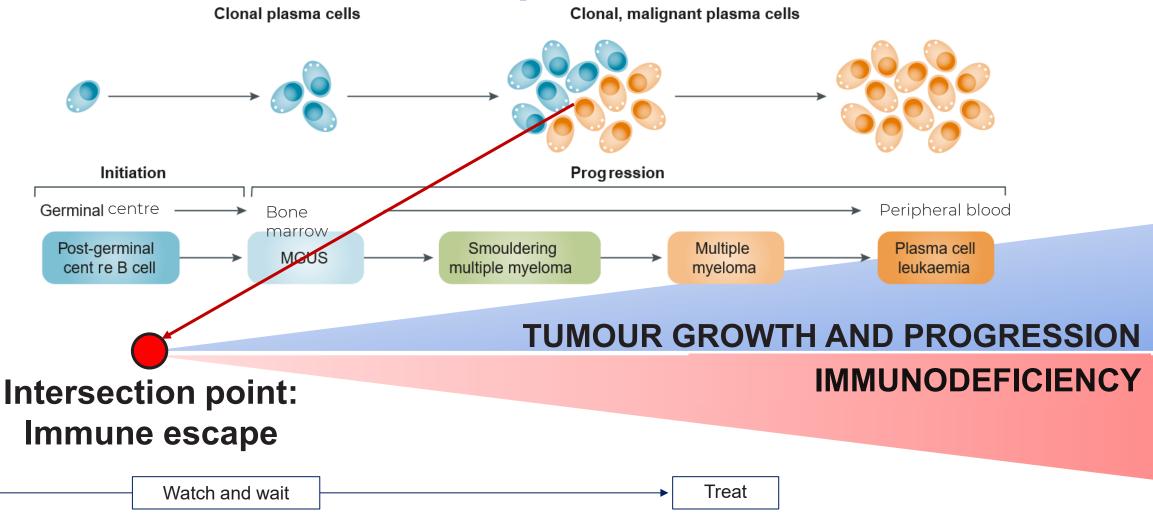

Balance between tumour containment and selective immune pressure

Escape: 1,2

Selected tumour clones can elude the immune response and successfully progress

Immunosuppressive cell types

- TAM
- MDSC
- T_{reg} cell


Upregulation of surface molecules

- HLA-G and/or HLA-E
- CD155 and/or CD112
- CD47
- PD-L1 and/or PD-L2
- CD39 and/or CD73

Dysregulation of secreted signalling molecules

- CCL4
- CCL2 ▲ IL-10
- IL-15IL-12
- IL-10TG β
- Tumour survival
 Tumour proliferation
 Defective cytotoxicity

If Immunodeficiency is First: Can we Advance its Complications?

A focus on SID incidence and the consequences

~25–50% of deaths related to infection¹

~80% experience a serious infectious event²

Hypogammaglobulinaemia in up to 85% of patients¹

CLL

Infections cause ~25–45% of deaths^{3,4}

7x bacterial infection; 10x viral infection⁴

SID affects over 90% of patients⁵

MM

Hypogammaglobulinaemia associated with lower OS⁶

Hypogammaglobulinaemia in 15% of patients at diagnosis⁷

Hypogammaglobulinaemia in 54% of patients post rituximab and 33% post immune/chemotherapy⁷

Lymphoma

Beyond Infections...

Cardiovascular disease
Second malignancy
Bone disease
Frailty
Dental problems
Psychological and emotional problems
Social and financial problems

Domain	Recommendations	recommendation ^a	Level of evidence ^a
Cardiovascular disease	Modifiable risk factors Regular physical activity and advice regarding nutrition and diet as per international cardiovascular primary	2	C-LD
	prevention guidelines [17]. Optimal control of modifiable cardiac risk factors such as hypertension, dyslipidemia and diabetes mellitus. BTK inhibitors [18]	2	C-LD
	Cardiovascular assessment (Including BP measurement and pulse-taking (or ECG rhythm strip) should be conducted at every visit.	2	C-LD
	Weekly home BP monitoring for three months, followed by monthly monitoring should be considered.	2	C-EO
	Transthoracic echocardiogram recommended in all high-risk patients at baseline and in all patients that develop AF.	2	C-EO
	Anthracycline induced cardiomyopathy We refer readers to the recently updated, comprehensive ESC guidelines on cardio-oncology [18]	1	See reference
	Early referral to a cardiologist/cardio-oncology service.	2b	C-E0
Immunity and Infections	Vaccinations as per consensus guidelines (e.g. [19,20]), preferably before treatment or during maintenance (although poor vaccine responses are well described in CLL and INHL). Annual inactivated influenza vaccine	1	B-NR
	Pheumococcal vaccine (pneumococcal conjugate vaccine, followed by pneumococcal polysaccharide 23-valent vaccine >2 months later).	i	B-NR
	COVID-19 vaccination as per local guidelines.	1	B-NR
	Recombinant varicella zoster virus vaccine [21]	1	B-NR
	Consider other inactive vaccines (including respiratory syncytial virus, hemophilus influenzae B, human papilloma virus, and hepatitis B vaccine) as per age, comorbidities and local recommendations, 3–6 months following treatment.	1	B-NR
	Avoidance of live vaccines.	1	C-LD
	Consideration of IVIg/SCIg in patients with hypogammaglobulinemia and severe/recurrent bacterial infection.	2	B-R
Secondary malignancy	Preventative measures:		
	Cessation of smoking [22], avoidance of excessive alcohol consumption, adherence to sun protection guidelines.	1	A
	Age based screening programs guided by personal and family history, radiation exposure and other risk factors	,	CID
	Skin cancer surveillance [23] Fecal occult blood testing (colonoscopy in high risk).	i	C-LD A
	Breast cancer screening program (mammography).	1	A
	Cervical screening (Pap-smears).	1	A
Bone disease	Prostate cancer screening (PSA) as per local guidelines (not universally recommended in asymptomatic men). Optimization of vitamin D and calcium status.	2	C-EO
bone docase	Weight bearing exercise.	2	C-LD
	Bone densitometry screening in patients with high corticosteroid exposure or other risk factors. Early referral to metabolic bone clinic/commencement of antiresorptive therapy.	2 2	C-LD C-LD
Frailty	Treatment of underlying CLL/NHL [24]	1	B-R
	A gertatric assessment (e.g. PGA) should be performed on all patients >65 yo and updated at key milestones [25].	1 2	B-R C-LD
	Motivate patients to maintain regular exercise, including aerobic exercise and resistance exercise for all major muscle groups.	2	C-EO
	Consider exercise physiology referral. Occupational therapy and physiotherapy referral as required.	2	C-E0
Psychological and	Screening (PGA, or other tools including HADS, PHQ-9, GAD-7, distress thermometer, and targeted history) at diagnosis and at regular intervals, particularly at times of change of disease status and management.	2	C-E0
emotional	Early psychology referral (preferably with cancer/chronic disease expertise).	2	C-EO
	Involvement with patient's primary care physician.	2	C-E0
	Provide information on local disease peer support groups.	2	C-EO
	Carer support	2	C-EO
Social and	Screen for impaired sexual health and impact on relationships. Early social work referral.	2	C-E0
financial Education and	Provision of (linguistically appropriate) disease-specific patient information.	2	C-EO
Information			
	Care-coordination.	2	C-E0
	Involvement of family in consults (with patient consent), particularly when change of disease status or management plan.	2	C-EU
	Provide Information on local cancer support services.	2	C-EO
Dentition	At least annual dental review.	2	C-E0
	Education regarding optimal dental hygiene.	2	C-EO

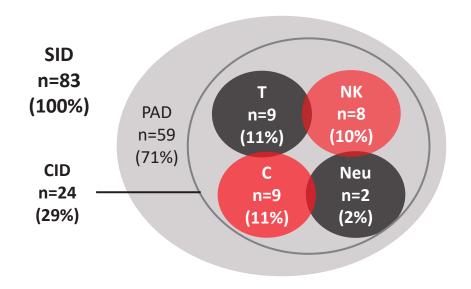
SID scope

- Need classification
- Infectious risk stratification

Antibody deficiency

Neutropenia

B cell memory defect


T cell deficiency

Hypocomplementemia

Defects on Mo/MDSCs

Defects on NK cells

Immunophenotyping: Classification of SID to B-CLPD by analogy with PID

- Severe infection: 3.69-fold higher risk with CID compared with PAD (P=0.001)*
- Progression of cancer observed earlier in CID compared with PAD: HR=3.21 (P=0.005)[†]

Progression-free survival according to immune defect phenotype

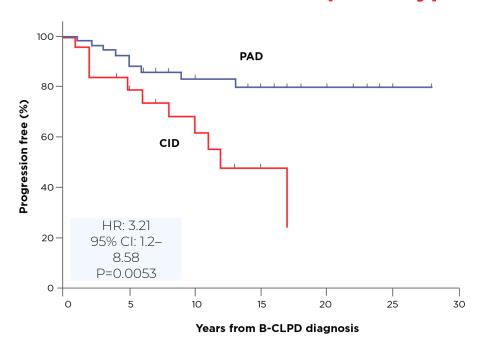
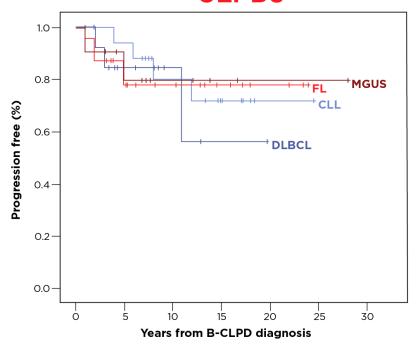
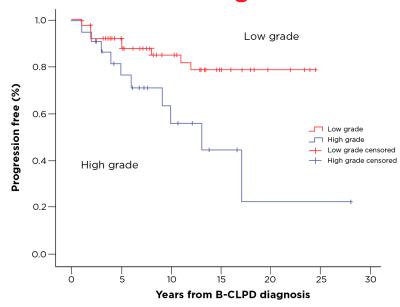



Figure adapted from Ochoa-Grullón J, et al. 2022.

Can we study SID across different B-CLPDs?


Cancer progression across different B-CLPDs

Cancer progression: No difference by disease

Figure adapted from Ochoa-Grullón J, et al. 2022, Ochoa-Grullón J, et al. 2021 and speaker experience. 1-3

Cancer progression adjusted by clinical stage

High grade/low grade adjusted by B-CLPD diagnosis HR: 3.285; 95% CI: 1.324–8.147; P=0.010

The Need for Change: Optimizing Diagnosis Flux in Patients with BCLPD

Reactive strategy

Oncohematological patients with recurrent and severe infections.

High risk hospitalizations.

Proactive strategy

- Multidisciplinary team: Hematology, Immunology, Preventive Medicine, Pharmacy
- Al for early PID diagnosis.
- Optimized protocols for vaccines and IgRt administration.

Patients

- ✓ Early detection and prophylaxis = less infections, better QoL.
- ✓ Personalized medicine.

Hospital

- ✓ Reduction of hospitalizations and costs.
- ✓ Optimization of resources with AI (89,5% of diagnostic sensitivity).

Optimising diagnostic flow for patients with B-cell targeted therapies or BCLPD

HEMATOLOGY DEPT.

Unit of Oncohematology
Dr. Celina Benavente Cuesta
Coordination of patients' flow: Dr. Ascensión Peña

Patients at diagnosis of:

- NHL ("Preferent" CODE for high-grade)
- CLL
- MGUS with infections
- MM

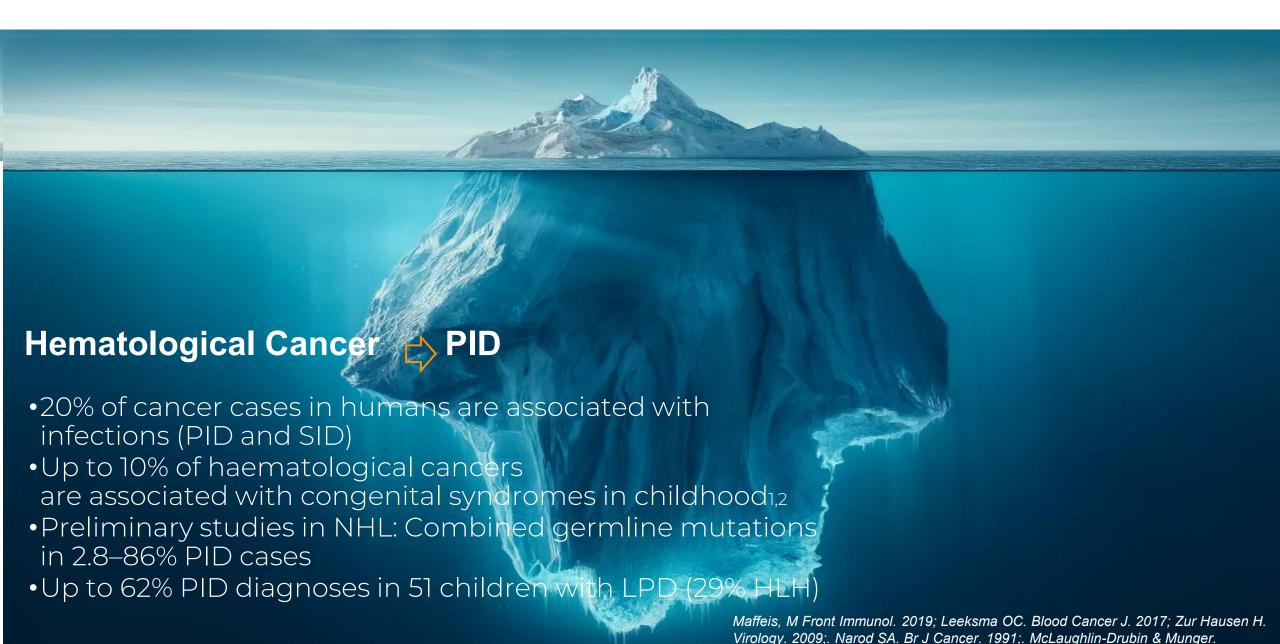
IMMUNOLOGY DEPT.

Consultation of Immunoprevention in
OncoHematology
Dra. Silvia Sánchez-Ramón
Immune evaluation & Immunoprevention

SPECIALIZED NURSE: education and training of the patient

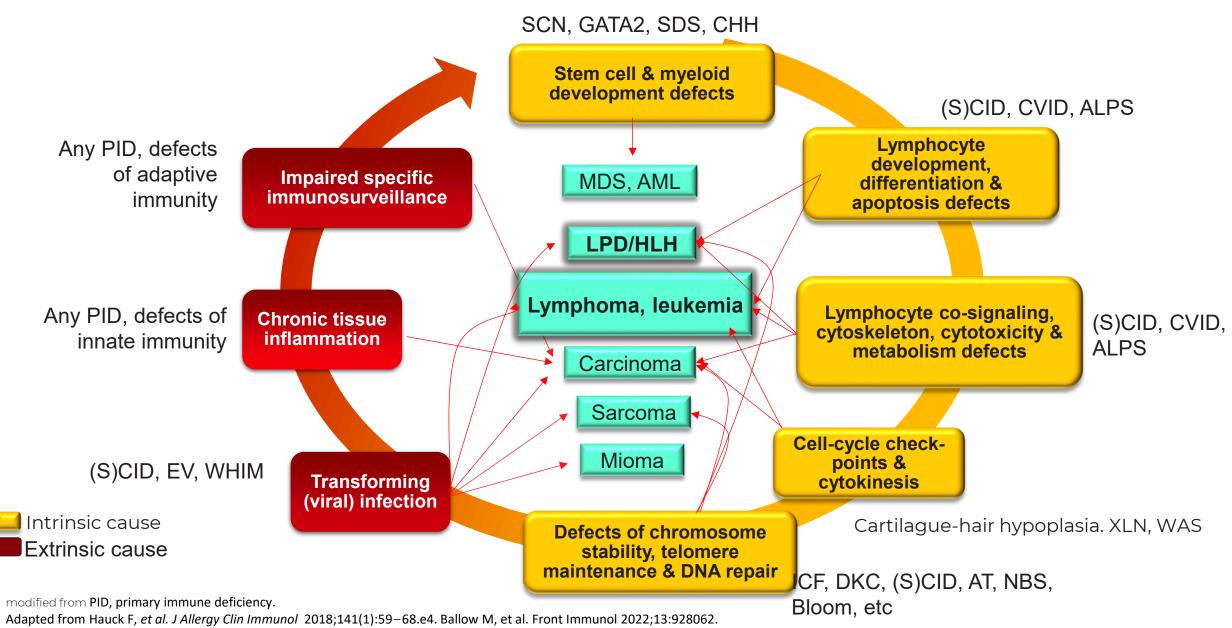
PREVENTIVE MEDICINE DEPT.

Dr. Alberto Mariano Lázaro Dr. Gloria Mato Chain Complete vaccination


PHARMACY DEPT.

Dra. Teresa Benítez Giménez Protocol of Treatment: IgIV & IgSC

PHARMACOLOGY DEPT.


Dr. Leonor Laredo Velasco
Pharmacoeconomic studies

PID: The Cancer Paradox

Biochim Biophys Acta. 2008: Forbes LR J Alleray Clin Immunol. 2022.

Mechanisms of malignancy in PID

Navigating the labyrinth: How to distinguish PID from SID

Variables	PID	SID
Recurrent/severe infections, autoimmune disease, enteropathy	 PAST medical history¹ Family history¹ 	AFTER cancer and/or cancer therapy, other causes¹
Immunological variables at B-CLPD diagnosis	 Low IgG/IgA (<2 SD)¹ Low levels of natural Ab¹ Low Ab responses at cancer diagnosis (primary and secondary)¹ Very low serum-free kappa/lambda (CVID)¹ Defect in memory B-cell phenotype¹ Specific PID signatures of T-cell subsets² 	Normal/low secondary responses ¹
B-cell reconstitution after therapy	Not applicable ¹	Rare but possible ¹
Response to cancer therapy	Toxicity, infections, secondary cancer, recurrence ¹	-
Genetic studies	Germline mutations associated with PID/B-CLPD¹	-
Preventive strategies	 Active surveillance of other complications (endoscopy), choose cancer immunotherapy, PCR/IH oncogenic viruses¹ Family evaluation^{3,4} Genetic counselling^{3,4} Specific targeted therapies^{4,5} 	-

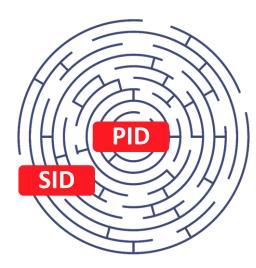
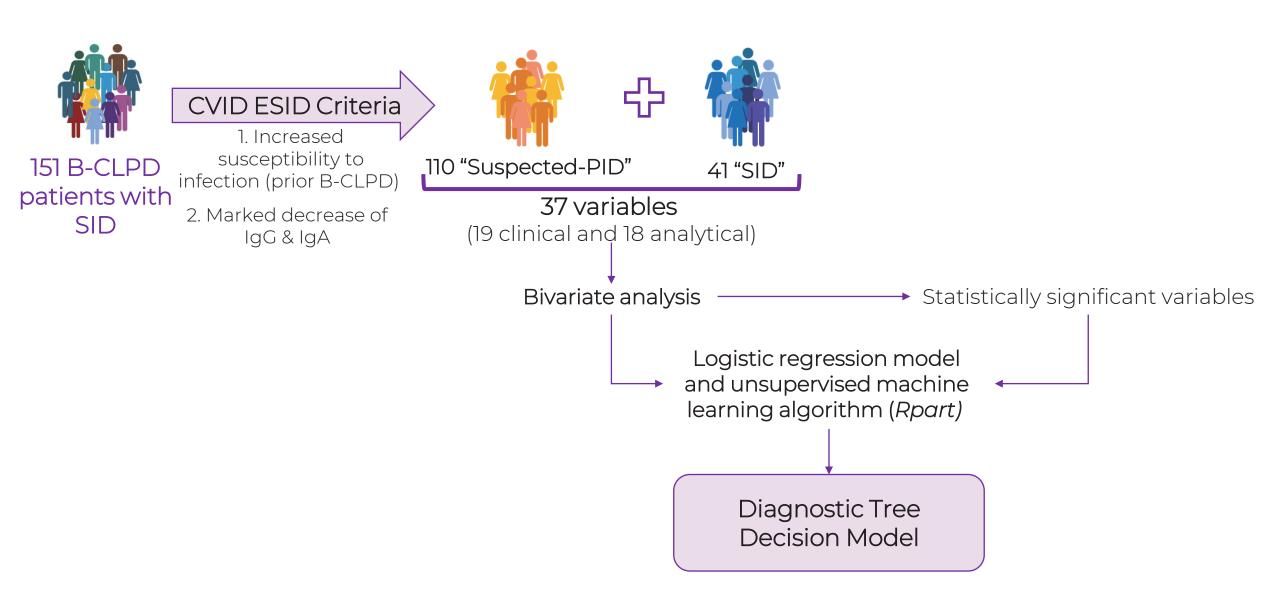



Image developed courtesy of speaker.4

Ab, antibody; B-CLPD, B-cell chronic lymphoproliferative disorder; CVID, common variable immunodeficiency; Ig, immunoglobulin; IH, immunohistochemistry; PCR, polymerase chain reaction; PID, primary immunodeficiency; SD, standard deviation; SID, secondary immunodeficiency.

1. Ballow M, et al. Front Immunol. 2022;13:928062; 2. Yi S, et al. Clin Transl Immunol. 2020;e1105; 3. Lehman H, et al. Curr Med Res Opin. 2015;31(4):697–706; 4. Content based on the knowledge and experience of the speaker; 5. Ochoa-Grullón J, et al. Biomed. 2022;10:2020.

Al Model to Identify IEI in Patients with SID

Al Model to Identify IEI in Patients with SID

Bivariant analysis

	"SUSPECTED PID GROUP" N= 110	"SID GROUP" N=41	р
Age at B-CLPD diagnosis (median(SD))	53.57 (15.35)	59.54 (11.91)	0.037
Rituximab treatment	63 (61.76)	13 (38.24)	0.028
Childhood recurrent/severe infections	57 (53.77)	0 (0)	<0.001
Recurrent/severe infections pre-BCLPD	53 (51.46)	1 (2.56)	<0.001
Family history of B-CLPD	41 (37.96)	5 (12.82)	0.006
IgRT	72 (67.29)	15 (39.47)	0.004
IgG at B-CLPD diagnosis	574.00 (387.50 - 928.00)	712.00 (494.00 - 1325.00)	0.027
sFLC kappa	10.40 (6.50 - 17.40)	16.90 (10.80 - 23.40)	0.002
sFLC lambda	9.10 (5.70 - 16.40)	17.00 (11.10 - 24.10)	<0.001
Sum kappa+lambda	19.10 (11.90 - 36.80)	36.00 (26.70 - 73.20)	<0.001
smB memory B	0.00 (0.00 - 6.50)	7.80 (0.00 - 23.65)	0.010
Leukocytes	6000.00 (4600.00 - 9200.00)		0.0275

Palacios-Ortega et al. Journal of Clinical Immunology 2024.

Clues for clinical assessment at B-CLPD diagnosis:

Clues for analytical assessment at B-CLPD diagnosis:

Higher needs of IgRT More vulnerable to immunodepletion and infection-related complications??

Higher needs of Rituximab

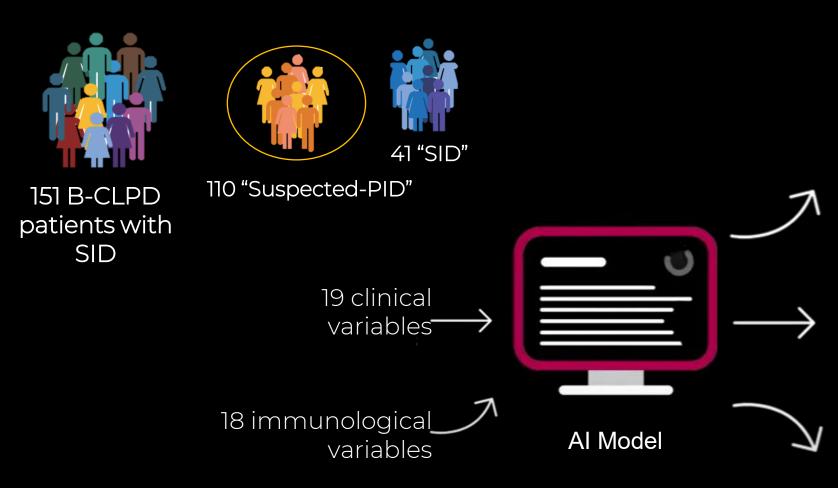
More aggressive B-CLPD??

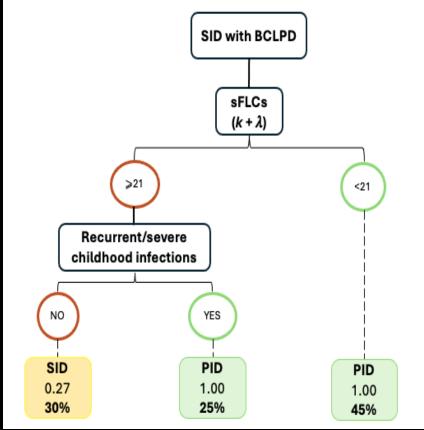
Leukocytes

Al Model to Identify IEI in Patients with SID

65 NHL patients with SID

19 clinical variables


18 immunological_ variables



	"PID-suspected	"SID NHL	
Variable	NHL group"	Group"	P-value
	No. = 52	No. = 13	
Childhood recurrent&severe			
infections	21 (40.4%)	0 (0%)	0.005
Infections prior to NHL			
diagnosis	23 (44.2%)	1 (7.7%)	0.01
Infections after NHL			
diagnosis	30 (57.7%)	4 (30.8%)	0.08
Malabsorptive syndrome	17 (32.7%)	2 (15.4%)	0.22
Second primary neoplasia	15 (28.8%)	2 (15.4%)	0.32
Family history of B cell			
neoplasms	8 (15.4%)	0 (0%)	0.13
Serum IgM at NHL diagnosis	56.12±44.54	225.23±19.79	
(mg/dL)	40	56	<0.0001
Sum kappa+lambda (mg/dL)	23.48±15.06	33.00±12.00	
зитт карра+таттюча (ттg/uL)	15	23	0.03
Class-switched memory B	2.06±5.29	6.33±2.12	
cells (%)	0	9	0.006

Al Model to Identify IEI in Patients with SID

Genetic questions

AR heritage

MUTATIONS

MOSAICISM

Late-onset PID

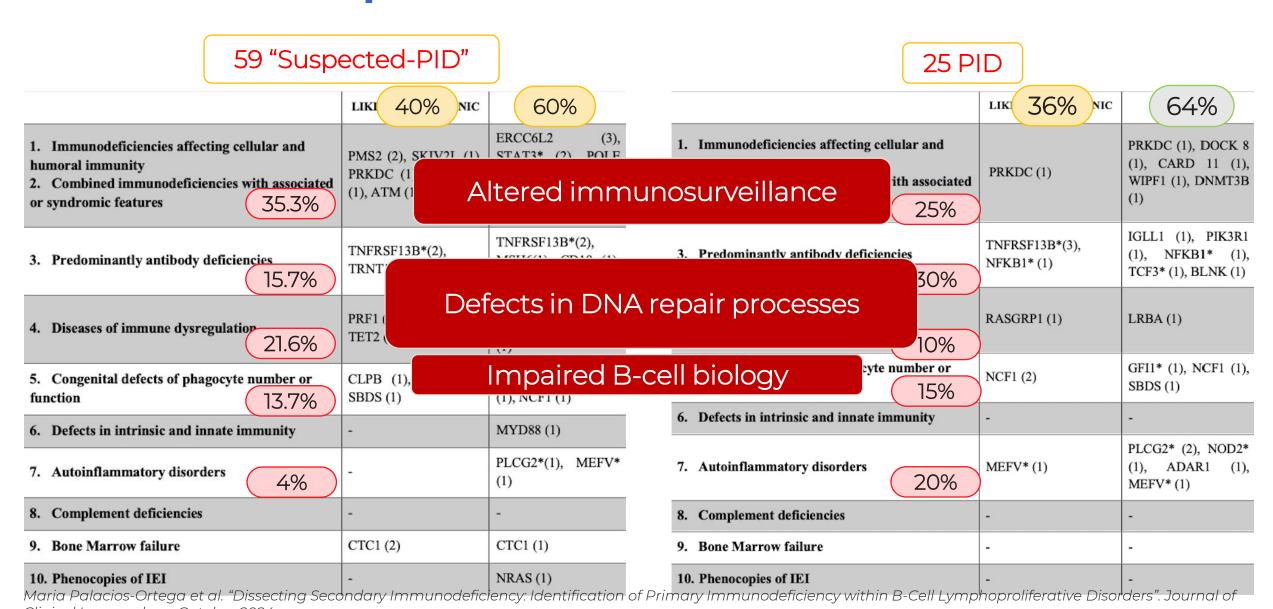
Genetic Variations around Hematologic Cancer

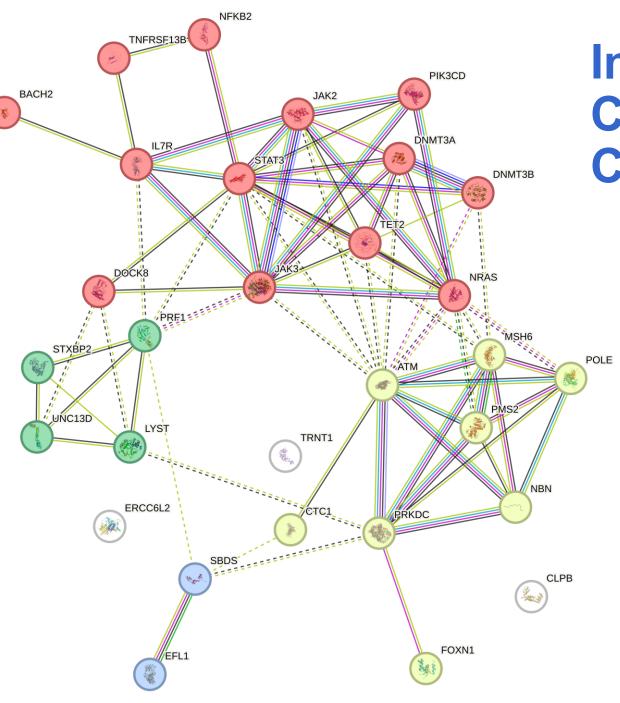
66% of 59 "Suspected-PID" → genetic variants related with IEI 30% redundant variants

	LIKELY/PATHOGENIC	VUS
Immunodeficiencies affecting cellular and humoral immunity Combined immunodeficiencies with associated or syndromic features	PMS2 (2), SKIV2L (1), PRKDC (1), DNMT3B (1), ATM (1)	
3. Predominantly antibody deficiencies	TNFRSF13B*(2), TRNT1 (1),	TNFRSF13B*(2), MSH6(1), CD19 (1), PIK3CD (1)
4. Diseases of immune dysregulation	PRF1 (2), STXBP2* (2), TET2 (1)	LYST (2), PDCD1 (1), LRBA (1), BACH2* (1)
5. Congenital defects of phagocyte number or function	CLPB (1), NCF1 (1), SBDS (1)	SBDS (2), GATA2* (1), NCF1 (1)
6. Defects in intrinsic and innate immunity	-	MYD88 (1)
7. Autoinflammatory disorders	,	PLCG2*(1), MEFV*
8. Complement deficiencies	-	-
9. Bone Marrow failure	CTC1 (2)	CTC1 (1)
10. Phenocopies of IEI	-	NRAS (1)

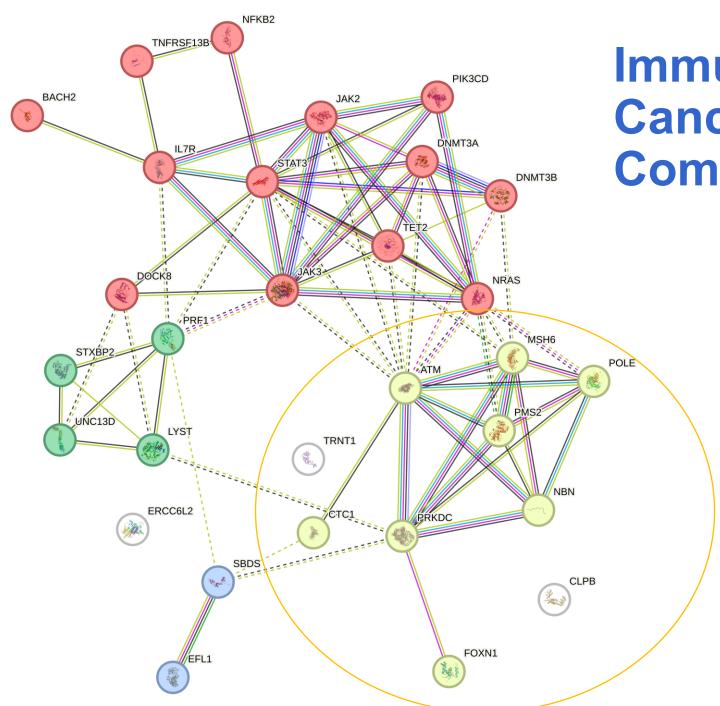
Genetic screening revealed the presence of IEI in 66% of 59 "Suspected-PID"

59 "Suspected-PID"

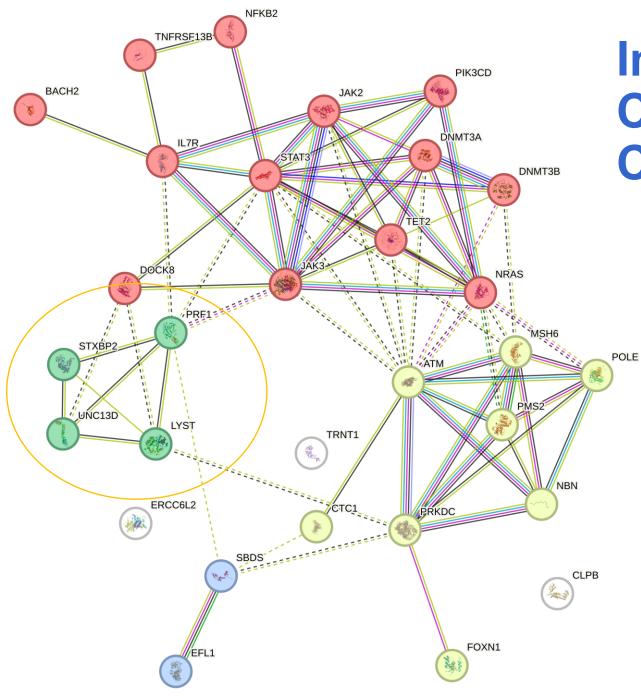

	шкі 40%	60%
 Immunodeficiencies affecting cellular and humoral immunity Combined immunodeficiencies with associated or syndromic features 	PMS2 (2), SKIV2L (1), PRKDC (1), DNMT3B (1), ATM (1)	ERCC6L2 (3), STAT3* (2), POLE (2), FOXN1*(1), PRKDC (1), JAK3 (1), DOCK8 (1), IL7R (1)
3. Predominantly antibody deficiencies 15.7%	TNFRSF13B*(2), TRNT1 (1),	TNFRSF13B*(2), MSH6(1), CD19 (1), PIK3CD (1)
4. Diseases of immune dysregulation 21.6%	PRF1 (2), STXBP2* (2), TET2 (1)	LYST (2), PDCD1 (1), LRBA (1), BACH2* (1)
5. Congenital defects of phagocyte number or function 13.7%	CLPB (1), NCF1 (1), SBDS (1)	SBDS (2), GATA2* (1), NCF1 (1)
6. Defects in intrinsic and innate immunity	-	MYD88 (1)
7. Autoinflammatory disorders 4%		PLCG2*(1), MEFV* (1)
8. Complement deficiencies	-	-
9. Bone Marrow failure	CTC1 (2)	CTC1 (1)
10. Phenocopies of IEI Maria Palacios-Ortega et al. "Dissectina Seco	-	NRAS (1)


25 PID

	LIK 36% NIC	64%
 Immunodeficiencies affecting cellular and humoral immunity Combined immunodeficiencies with associated or syndromic features 	PRKDC (1)	PRKDC (1), DOCK 8 (1), CARD 11 (1), WIPF1 (1), DNMT3B (1)
3. Predominantly antibody deficiencies 30%	TNFRSF13B*(3), NFKB1* (1)	IGLL1 (1), PIK3R1 (1), NFKB1* (1), TCF3* (1), BLNK (1)
4. Diseases of immune dysregulation	RASGRP1 (1)	LRBA (1)
5. Congenital defects of phagocyte number or function 15%	NCF1 (2)	GFI1* (1), NCF1 (1), SBDS (1)
6. Defects in intrinsic and innate immunity	-	-
7. Autoinflammatory disorders 20%	MEFV* (1)	PLCG2* (2), NOD2* (1), ADAR1 (1), MEFV* (1)
8. Complement deficiencies	-	-
9. Bone Marrow failure	-	-
10. Phenocopies of IEI mary Immunodeficiency within B-Cell Lymp	- hoproliferative Disor	- ders". Journal of

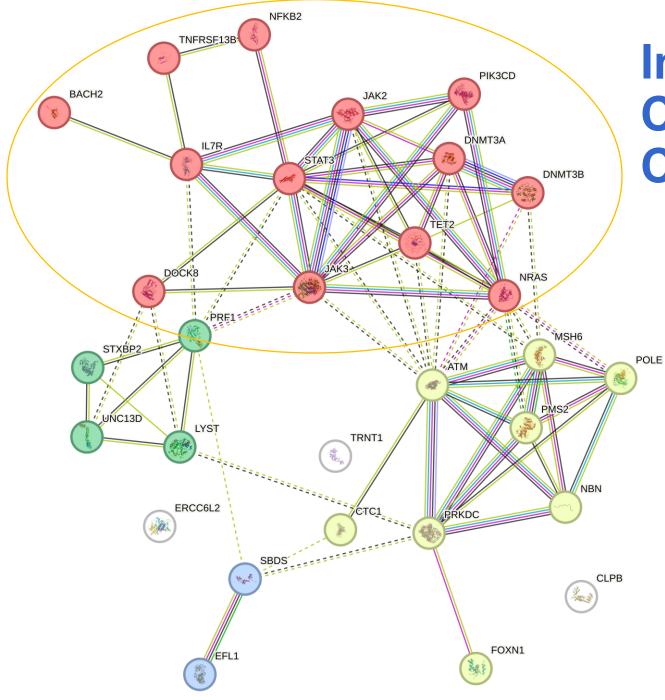

laria Palacios-Ortega et al. "Dissecting Secondary Immunodeficlency: Identification of Primary Immunodeficiency within B-Cell Lymphoproliferative Disorders". Journal of

Genetic screening revealed the presence of IEI in 66% of 59 "Suspected-PID"


Genetic Network
VUS + Pathogenic
Variants

PRKDC

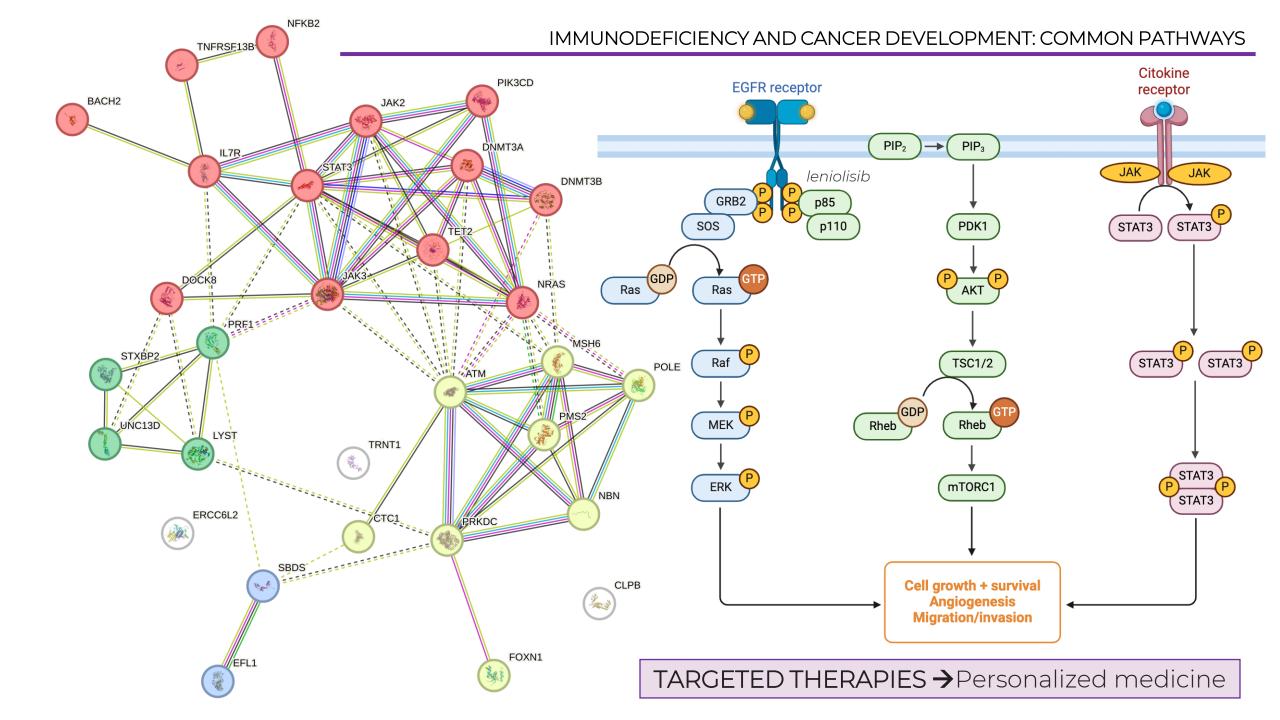
Oncogenic cell
development
AND
B cell maturation
impairment



Degranulation

PRF1

Immune
dysregulation
AND anti-tumor
immunosurveillan
ce disruption

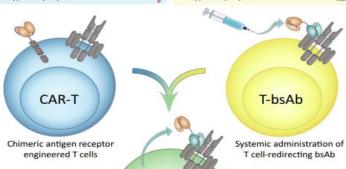


Phosphoinositide-3-kinase δ (PI3K δ)

PI3KCD and

PIK3R1 Activated PI3 Kinase Delta Syndrome (APDS) AND Malignancies (Lymphomas and solid tumors)

Targeted therapies based on pathophysiology


Condition	Targeted therapy
IPEX	Tacrolimus, cyclosporin, sirolimus
STAT1 GOF	Ruxolitinib (JAK1/2 inhibitor)
STAT3 GOF	Tocilizumab, siltuximab, ruxolitinib
LRBA deficiency	Abatacept
CTLA4 haploinsufficiency	Abatacept
APDS	Sirolimus, leniolisib
XIAP and NLRC4	IL-18 binding protein
Primary HLH	Emapalumab, ruxolitinib

Advanced therapies in refractory cases

- Active trafficking
- Signal 1 + signal 2
- Long lifespan
- · Individualized therapy
- · Recruitment of CAR-T cells only
- · Atypical synapse

- · Passive trafficking
- Signal 1
- Short half-life
 Off-the-shelf therapy
- Polyclonal recruitment of TILs
- Typical synapse

STAb

In situ secretion of


T cell-redirecting bsAB
On-tumor STAb Off-tumor STAb

- Active trafficking
- · Signal 1
- Long lifespan/constant release
- · Individualized therapy
- Polyclonal recruitment of TILs
- Typical synapse

- · Passive trafficking
- Signal 1
- Long lifespan/constant release
- · Off-the-shelf therapy
- · Polyclonal recruitment of TILs
- · Typical synapse

Multicentric Study: B-LINK

Variables and **Data Collection**

Studies

WES (all patients) Genomic DNA (genomic variants) + Tumor level if possible (somatic variants)

sFLC levels: κ+λ ≤21

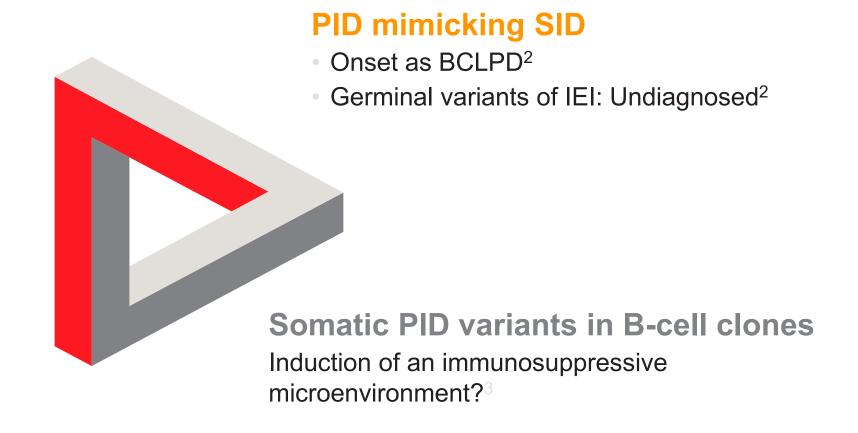
Severe / Recurrent Infections (Childhood)

Aim:

- To verify the results obtained in the pilot study.
- To define distinct clinical and immunological patterns in patients with underlying PIDs underlying the B-CLPD cohort.
- To set a new standard for early, precise diagnosis and intervention, ultimately enhancing patient outcomes and quality of life on a global scale.
- To bring us closer to personalized medicine.

Variants Selection and Analysis ("PID associated genes")

Functional Variant Validation


Genetic counseling

The third perspective in PID-SID genetic crossovers: the tumour microenvironment

PID evolving into BCLPD

Meta-analysis of 48 studies worldwide (8123 patients with CVID):

- 790 cases with malignancy¹
- NHL was the most prevalent malignancy (41%) in patients with CVID¹

BCLPD, B-cell lymphoproliferative disorder; CVID, common variable immunodeficiency; IEI, inborn errors of immunity; NHL, non-Hodgkin lymphoma; PID, primary immunodeficiency;

SID. secondary immunodeficiency.

1. Kiaee F, et al. Expert Rev Clin Immunol. 2019;15:1105–1113; 2. Ballow M, et al. Front Immunol. 2022;13:928062; 3. Guevara-Hoyer K, et al. Front Immunol. 2022;13:937872.

Exploring gene networks associating CVID and NH lymphoma

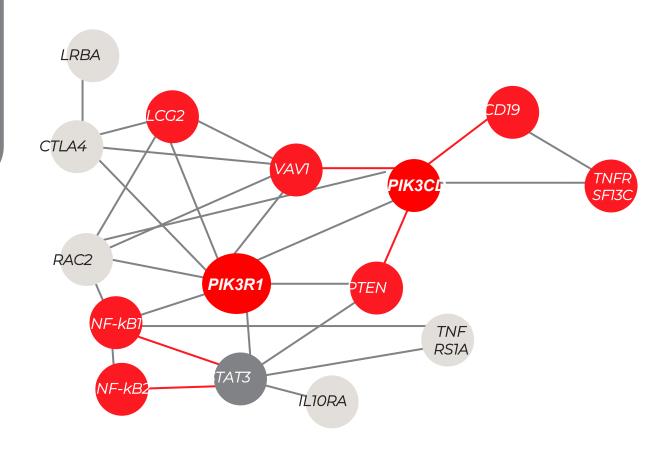
1309 NHL samples¹

50 CVID-associated genes and their variants¹

323 (25% at least one variant)¹ ~50% co-occurrence of variants²

Gene	Prevalence (%) in samples studied (somatic mutation)	No. samples altered
PIK3CD	6	72
KMT2C	5	64
STAT3	4	57
MSH2	3	40
NFKB2	2.4	31
PTEN	1.8	24
PIK3R1	1.3	17
LRBA	0.9	12

Table adapted from Guevara-Hoyer K, et al. 2022.1


Exploring gene networks associating CVID and lymphoma

CVID phenotype

BCLPD

(NHL)

BCLPD CVID-like somatic variants?

Early Diagnosis, Management, and Humanization in the Care of Immunodeficiency in Oncohematology

- Importance of a Multidisciplinary Unit
- The clinical relevance of an adequate assessment and classification of the immunodeficiency in B-CLPD by serum biomarkers and immune phenotyping in predicting disease progression and guiding treatment decisions.
- The challenges in diagnosing primary versus secondary immunodeficiency and the importance of early recognition.
- Our preliminary results in molecular diagnostics not only represent an improvement in protocols but could also lead to a revolution in cancer management.
- Personalized treatment must go hand in hand with education and support, so that the patient
 understands their process and actively participates in their own health.
- The role of specialized nursing is key in this transformation, ensuring accessibility and continuous follow-up.

¡Thank you! Tusen tack!!

Hospital Clínico San Carlos Dpto. de Hematología

- Ascensión Peña
- Ata González
- Cristina Pérez López
- Estefanía Bolaños
- Eduardo Anguita
- Belén Íñigo
- Marta Mateo Morales
- Marta Polo zarzuela
- Fiorela Medina
- Celina Benavente Cuesta

Hospital Clínico San Carlos Dpto. de Inmunología Clínica

- Blanca García Solís
- María Palacios
- Teresa Guerra
- Eduardo de la Fuente
- Mariló Mansilla Ruiz
- Ángela Villegas
- Elsa Mayol
- Alejandro Peixoto
- Alejandro Pereiro
- Marc Pérez
- María Guzmán Fulgencio
- Miguel Fernández Arquero

Hospital Clínico San Carlos Enfermería

Elisabte Peiró


Hospital Clínico San Carlos Depto.Preventiva

- Gloria Mato
- Marta Russo Sanjuanbenito
- Alberto Mariano Lázaro

Hospital Clínico San Carlos Depto. Farmacia

- Ana García Sacristán
- Teresa Benítez Giménez

Hospital Clínico San Carlos Depto. Farmacología

- Leonor Laredo
- Emilio Vargas

